Metamath Proof Explorer


Theorem vdwapid1

Description: The first element of an arithmetic progression. (Contributed by Mario Carneiro, 12-Sep-2014)

Ref Expression
Assertion vdwapid1 K A D A A AP K D

Proof

Step Hyp Ref Expression
1 ssun1 A A A + D AP K 1 D
2 snssg A A A A + D AP K 1 D A A A + D AP K 1 D
3 2 3ad2ant2 K A D A A A + D AP K 1 D A A A + D AP K 1 D
4 1 3 mpbiri K A D A A A + D AP K 1 D
5 nncn K K
6 5 3ad2ant1 K A D K
7 ax-1cn 1
8 npcan K 1 K - 1 + 1 = K
9 6 7 8 sylancl K A D K - 1 + 1 = K
10 9 fveq2d K A D AP K - 1 + 1 = AP K
11 10 oveqd K A D A AP K - 1 + 1 D = A AP K D
12 nnm1nn0 K K 1 0
13 vdwapun K 1 0 A D A AP K - 1 + 1 D = A A + D AP K 1 D
14 12 13 syl3an1 K A D A AP K - 1 + 1 D = A A + D AP K 1 D
15 11 14 eqtr3d K A D A AP K D = A A + D AP K 1 D
16 4 15 eleqtrrd K A D A A AP K D