Metamath Proof Explorer


Theorem vonn0icc

Description: The n-dimensional Lebesgue measure of a closed interval, when the dimension of the space is nonzero. This is the second statement in Proposition 115G (d) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses vonn0icc.x φ X Fin
vonn0icc.n φ X
vonn0icc.a φ A : X
vonn0icc.b φ B : X
vonn0icc.i I = k X A k B k
Assertion vonn0icc φ voln X I = k X vol A k B k

Proof

Step Hyp Ref Expression
1 vonn0icc.x φ X Fin
2 vonn0icc.n φ X
3 vonn0icc.a φ A : X
4 vonn0icc.b φ B : X
5 vonn0icc.i I = k X A k B k
6 fveq2 j = k a j = a k
7 fveq2 j = k b j = b k
8 6 7 oveq12d j = k a j b j = a k b k
9 8 fveq2d j = k vol a j b j = vol a k b k
10 9 cbvprodv j x vol a j b j = k x vol a k b k
11 ifeq2 j x vol a j b j = k x vol a k b k if x = 0 j x vol a j b j = if x = 0 k x vol a k b k
12 10 11 ax-mp if x = 0 j x vol a j b j = if x = 0 k x vol a k b k
13 12 a1i a x b x if x = 0 j x vol a j b j = if x = 0 k x vol a k b k
14 13 mpoeq3ia a x , b x if x = 0 j x vol a j b j = a x , b x if x = 0 k x vol a k b k
15 14 mpteq2i x Fin a x , b x if x = 0 j x vol a j b j = x Fin a x , b x if x = 0 k x vol a k b k
16 1 3 4 5 15 vonicc φ voln X I = A x Fin a x , b x if x = 0 j x vol a j b j X B
17 15 fveq1i x Fin a x , b x if x = 0 j x vol a j b j X = x Fin a x , b x if x = 0 k x vol a k b k X
18 17 oveqi A x Fin a x , b x if x = 0 j x vol a j b j X B = A x Fin a x , b x if x = 0 k x vol a k b k X B
19 18 a1i φ A x Fin a x , b x if x = 0 j x vol a j b j X B = A x Fin a x , b x if x = 0 k x vol a k b k X B
20 16 19 eqtrd φ voln X I = A x Fin a x , b x if x = 0 k x vol a k b k X B
21 eqid x Fin a x , b x if x = 0 k x vol a k b k = x Fin a x , b x if x = 0 k x vol a k b k
22 21 1 2 3 4 hoidmvn0val φ A x Fin a x , b x if x = 0 k x vol a k b k X B = k X vol A k B k
23 3 ffvelrnda φ k X A k
24 4 ffvelrnda φ k X B k
25 23 24 voliccico φ k X vol A k B k = vol A k B k
26 25 eqcomd φ k X vol A k B k = vol A k B k
27 26 prodeq2dv φ k X vol A k B k = k X vol A k B k
28 20 22 27 3eqtrd φ voln X I = k X vol A k B k