Metamath Proof Explorer


Theorem weisoeq

Description: Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso . (Contributed by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion weisoeq RWeARSeAFIsomR,SABGIsomR,SABF=G

Proof

Step Hyp Ref Expression
1 id GIsomR,SABGIsomR,SAB
2 isocnv FIsomR,SABF-1IsomS,RBA
3 isotr GIsomR,SABF-1IsomS,RBAF-1GIsomR,RAA
4 1 2 3 syl2anr FIsomR,SABGIsomR,SABF-1GIsomR,RAA
5 weniso RWeARSeAF-1GIsomR,RAAF-1G=IA
6 5 3expa RWeARSeAF-1GIsomR,RAAF-1G=IA
7 4 6 sylan2 RWeARSeAFIsomR,SABGIsomR,SABF-1G=IA
8 simprl RWeARSeAFIsomR,SABGIsomR,SABFIsomR,SAB
9 isof1o FIsomR,SABF:A1-1 ontoB
10 f1of1 F:A1-1 ontoBF:A1-1B
11 8 9 10 3syl RWeARSeAFIsomR,SABGIsomR,SABF:A1-1B
12 simprr RWeARSeAFIsomR,SABGIsomR,SABGIsomR,SAB
13 isof1o GIsomR,SABG:A1-1 ontoB
14 f1of1 G:A1-1 ontoBG:A1-1B
15 12 13 14 3syl RWeARSeAFIsomR,SABGIsomR,SABG:A1-1B
16 f1eqcocnv F:A1-1BG:A1-1BF=GF-1G=IA
17 11 15 16 syl2anc RWeARSeAFIsomR,SABGIsomR,SABF=GF-1G=IA
18 7 17 mpbird RWeARSeAFIsomR,SABGIsomR,SABF=G