Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | wemoiso2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl | |
|
2 | isof1o | |
|
3 | f1ofo | |
|
4 | forn | |
|
5 | 2 3 4 | 3syl | |
6 | vex | |
|
7 | 6 | rnex | |
8 | 5 7 | eqeltrrdi | |
9 | 8 | ad2antrl | |
10 | exse | |
|
11 | 9 10 | syl | |
12 | 1 11 | jca | |
13 | weisoeq2 | |
|
14 | 12 13 | sylancom | |
15 | 14 | ex | |
16 | 15 | alrimivv | |
17 | isoeq1 | |
|
18 | 17 | mo4 | |
19 | 16 18 | sylibr | |