Metamath Proof Explorer


Theorem wemoiso2

Description: Thus, there is at most one isomorphism between any two well-ordered sets. (Contributed by Stefan O'Rear, 12-Feb-2015) (Revised by Mario Carneiro, 25-Jun-2015)

Ref Expression
Assertion wemoiso2 SWeB*ffIsomR,SAB

Proof

Step Hyp Ref Expression
1 simpl SWeBfIsomR,SABgIsomR,SABSWeB
2 isof1o fIsomR,SABf:A1-1 ontoB
3 f1ofo f:A1-1 ontoBf:AontoB
4 forn f:AontoBranf=B
5 2 3 4 3syl fIsomR,SABranf=B
6 vex fV
7 6 rnex ranfV
8 5 7 eqeltrrdi fIsomR,SABBV
9 8 ad2antrl SWeBfIsomR,SABgIsomR,SABBV
10 exse BVSSeB
11 9 10 syl SWeBfIsomR,SABgIsomR,SABSSeB
12 1 11 jca SWeBfIsomR,SABgIsomR,SABSWeBSSeB
13 weisoeq2 SWeBSSeBfIsomR,SABgIsomR,SABf=g
14 12 13 sylancom SWeBfIsomR,SABgIsomR,SABf=g
15 14 ex SWeBfIsomR,SABgIsomR,SABf=g
16 15 alrimivv SWeBfgfIsomR,SABgIsomR,SABf=g
17 isoeq1 f=gfIsomR,SABgIsomR,SAB
18 17 mo4 *ffIsomR,SABfgfIsomR,SABgIsomR,SABf=g
19 16 18 sylibr SWeB*ffIsomR,SAB