Metamath Proof Explorer


Theorem wl-nfeqfb

Description: Extend nfeqf to an equivalence. (Contributed by Wolf Lammen, 31-Jul-2019)

Ref Expression
Assertion wl-nfeqfb x y = z x x = y x x = z

Proof

Step Hyp Ref Expression
1 nf5r x y = z y = z x y = z
2 1 imp x y = z y = z x y = z
3 wl-aleq x y = z y = z x x = y x x = z
4 3 simprbi x y = z x x = y x x = z
5 2 4 syl x y = z y = z x x = y x x = z
6 nfnt x y = z x ¬ y = z
7 6 nf5rd x y = z ¬ y = z x ¬ y = z
8 7 imp x y = z ¬ y = z x ¬ y = z
9 alnex x ¬ y = z ¬ x y = z
10 wl-exeq x y = z y = z x x = y x x = z
11 9 10 xchbinx x ¬ y = z ¬ y = z x x = y x x = z
12 3ioran ¬ y = z x x = y x x = z ¬ y = z ¬ x x = y ¬ x x = z
13 11 12 sylbb x ¬ y = z ¬ y = z ¬ x x = y ¬ x x = z
14 3simpc ¬ y = z ¬ x x = y ¬ x x = z ¬ x x = y ¬ x x = z
15 pm5.21 ¬ x x = y ¬ x x = z x x = y x x = z
16 8 13 14 15 4syl x y = z ¬ y = z x x = y x x = z
17 5 16 pm2.61dan x y = z x x = y x x = z
18 ax7 x = y x = z y = z
19 18 al2imi x x = y x x = z x y = z
20 nftht x y = z x y = z
21 19 20 syl6 x x = y x x = z x y = z
22 nfeqf ¬ x x = y ¬ x x = z x y = z
23 22 ex ¬ x x = y ¬ x x = z x y = z
24 21 23 bija x x = y x x = z x y = z
25 17 24 impbii x y = z x x = y x x = z