Metamath Proof Explorer


Theorem wl-sbcom2d

Description: Version of sbcom2 with a context, and distinct variable conditions replaced with distinctors. (Contributed by Wolf Lammen, 4-Aug-2019)

Ref Expression
Hypotheses wl-sbcom2d.1 φ¬xx=w
wl-sbcom2d.2 φ¬xx=z
wl-sbcom2d.3 φ¬zz=y
Assertion wl-sbcom2d φwzyxψyxwzψ

Proof

Step Hyp Ref Expression
1 wl-sbcom2d.1 φ¬xx=w
2 wl-sbcom2d.2 φ¬xx=z
3 wl-sbcom2d.3 φ¬zz=y
4 ax6ev uu=y
5 ax6ev vv=w
6 wl-sbcom2d-lem2 ¬zz=xuxvzψxzx=uz=vψ
7 alcom xzx=uz=vψzxx=uz=vψ
8 ancomst x=uz=vψz=vx=uψ
9 8 2albii zxx=uz=vψzxz=vx=uψ
10 7 9 bitri xzx=uz=vψzxz=vx=uψ
11 6 10 bitrdi ¬zz=xuxvzψzxz=vx=uψ
12 11 naecoms ¬xx=zuxvzψzxz=vx=uψ
13 wl-sbcom2d-lem2 ¬xx=zvzuxψzxz=vx=uψ
14 12 13 bitr4d ¬xx=zuxvzψvzuxψ
15 2 14 syl φuxvzψvzuxψ
16 15 adantl u=yv=wφuxvzψvzuxψ
17 wl-sbcom2d-lem1 u=yv=w¬xx=wuxvzψyxwzψ
18 1 17 syl5 u=yv=wφuxvzψyxwzψ
19 18 imp u=yv=wφuxvzψyxwzψ
20 wl-sbcom2d-lem1 v=wu=y¬zz=yvzuxψwzyxψ
21 3 20 syl5 v=wu=yφvzuxψwzyxψ
22 21 ancoms u=yv=wφvzuxψwzyxψ
23 22 imp u=yv=wφvzuxψwzyxψ
24 16 19 23 3bitr3rd u=yv=wφwzyxψyxwzψ
25 24 exp31 u=yv=wφwzyxψyxwzψ
26 25 exlimdv u=yvv=wφwzyxψyxwzψ
27 26 exlimiv uu=yvv=wφwzyxψyxwzψ
28 4 5 27 mp2 φwzyxψyxwzψ