Metamath Proof Explorer


Theorem wlkson

Description: The set of walks between two vertices. (Contributed by Alexander van der Vekens, 12-Dec-2017) (Revised by AV, 30-Dec-2020) (Revised by AV, 22-Mar-2021)

Ref Expression
Hypothesis wlkson.v V=VtxG
Assertion wlkson AVBVAWalksOnGB=fp|fWalksGpp0=Apf=B

Proof

Step Hyp Ref Expression
1 wlkson.v V=VtxG
2 1 1vgrex AVGV
3 2 adantr AVBVGV
4 simpl AVBVAV
5 4 1 eleqtrdi AVBVAVtxG
6 simpr AVBVBV
7 6 1 eleqtrdi AVBVBVtxG
8 eqeq2 a=Ap0=ap0=A
9 eqeq2 b=Bpf=bpf=B
10 8 9 bi2anan9 a=Ab=Bp0=apf=bp0=Apf=B
11 biidd g=Gp0=apf=bp0=apf=b
12 df-wlkson WalksOn=gVaVtxg,bVtxgfp|fWalksgpp0=apf=b
13 eqid Vtxg=Vtxg
14 3anass fWalksgpp0=apf=bfWalksgpp0=apf=b
15 14 biancomi fWalksgpp0=apf=bp0=apf=bfWalksgp
16 15 opabbii fp|fWalksgpp0=apf=b=fp|p0=apf=bfWalksgp
17 13 13 16 mpoeq123i aVtxg,bVtxgfp|fWalksgpp0=apf=b=aVtxg,bVtxgfp|p0=apf=bfWalksgp
18 17 mpteq2i gVaVtxg,bVtxgfp|fWalksgpp0=apf=b=gVaVtxg,bVtxgfp|p0=apf=bfWalksgp
19 12 18 eqtri WalksOn=gVaVtxg,bVtxgfp|p0=apf=bfWalksgp
20 3 5 7 10 11 19 mptmpoopabbrd AVBVAWalksOnGB=fp|p0=Apf=BfWalksGp
21 ancom p0=Apf=BfWalksGpfWalksGpp0=Apf=B
22 3anass fWalksGpp0=Apf=BfWalksGpp0=Apf=B
23 21 22 bitr4i p0=Apf=BfWalksGpfWalksGpp0=Apf=B
24 23 opabbii fp|p0=Apf=BfWalksGp=fp|fWalksGpp0=Apf=B
25 20 24 eqtrdi AVBVAWalksOnGB=fp|fWalksGpp0=Apf=B