Metamath Proof Explorer


Theorem wnefimgd

Description: The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020)

Ref Expression
Hypotheses wnefimgd.1 φ A
wnefimgd.2 φ F : A B
Assertion wnefimgd φ F A

Proof

Step Hyp Ref Expression
1 wnefimgd.1 φ A
2 wnefimgd.2 φ F : A B
3 ssid A A
4 2 fdmd φ dom F = A
5 3 4 sseqtrrid φ A dom F
6 sseqin2 A dom F dom F A = A
7 5 6 sylib φ dom F A = A
8 7 1 eqnetrd φ dom F A
9 8 imadisjlnd φ F A