Metamath Proof Explorer


Theorem wunress

Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof shortened by AV, 28-Oct-2024)

Ref Expression
Hypotheses wunress.1 φUWUni
wunress.2 φωU
wunress.3 φWU
Assertion wunress φW𝑠AU

Proof

Step Hyp Ref Expression
1 wunress.1 φUWUni
2 wunress.2 φωU
3 wunress.3 φWU
4 eqid W𝑠A=W𝑠A
5 eqid BaseW=BaseW
6 4 5 ressval WUAVW𝑠A=ifBaseWAWWsSetBasendxABaseW
7 3 6 sylan φAVW𝑠A=ifBaseWAWWsSetBasendxABaseW
8 1 2 basndxelwund φBasendxU
9 incom ABaseW=BaseWA
10 baseid Base=SlotBasendx
11 10 1 3 wunstr φBaseWU
12 1 11 wunin φBaseWAU
13 9 12 eqeltrid φABaseWU
14 1 8 13 wunop φBasendxABaseWU
15 1 3 14 wunsets φWsSetBasendxABaseWU
16 3 15 ifcld φifBaseWAWWsSetBasendxABaseWU
17 16 adantr φAVifBaseWAWWsSetBasendxABaseWU
18 7 17 eqeltrd φAVW𝑠AU
19 18 ex φAVW𝑠AU
20 1 wun0 φU
21 reldmress Reldom𝑠
22 21 ovprc2 ¬AVW𝑠A=
23 22 eleq1d ¬AVW𝑠AUU
24 20 23 syl5ibrcom φ¬AVW𝑠AU
25 19 24 pm2.61d φW𝑠AU