Metamath Proof Explorer


Theorem wunressOLD

Description: Obsolete proof of wunress as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses wunress.1 φ U WUni
wunress.2 φ ω U
wunress.3 φ W U
Assertion wunressOLD φ W 𝑠 A U

Proof

Step Hyp Ref Expression
1 wunress.1 φ U WUni
2 wunress.2 φ ω U
3 wunress.3 φ W U
4 eqid W 𝑠 A = W 𝑠 A
5 eqid Base W = Base W
6 4 5 ressval W U A V W 𝑠 A = if Base W A W W sSet Base ndx A Base W
7 3 6 sylan φ A V W 𝑠 A = if Base W A W W sSet Base ndx A Base W
8 df-base Base = Slot 1
9 1 2 wunndx φ ndx U
10 8 1 9 wunstr φ Base ndx U
11 incom A Base W = Base W A
12 baseid Base = Slot Base ndx
13 12 1 3 wunstr φ Base W U
14 1 13 wunin φ Base W A U
15 11 14 eqeltrid φ A Base W U
16 1 10 15 wunop φ Base ndx A Base W U
17 1 3 16 wunsets φ W sSet Base ndx A Base W U
18 3 17 ifcld φ if Base W A W W sSet Base ndx A Base W U
19 18 adantr φ A V if Base W A W W sSet Base ndx A Base W U
20 7 19 eqeltrd φ A V W 𝑠 A U
21 20 ex φ A V W 𝑠 A U
22 1 wun0 φ U
23 reldmress Rel dom 𝑠
24 23 ovprc2 ¬ A V W 𝑠 A =
25 24 eleq1d ¬ A V W 𝑠 A U U
26 22 25 syl5ibrcom φ ¬ A V W 𝑠 A U
27 21 26 pm2.61d φ W 𝑠 A U