Metamath Proof Explorer


Theorem wunressOLD

Description: Obsolete proof of wunress as of 28-Oct-2024. Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses wunress.1 φUWUni
wunress.2 φωU
wunress.3 φWU
Assertion wunressOLD φW𝑠AU

Proof

Step Hyp Ref Expression
1 wunress.1 φUWUni
2 wunress.2 φωU
3 wunress.3 φWU
4 eqid W𝑠A=W𝑠A
5 eqid BaseW=BaseW
6 4 5 ressval WUAVW𝑠A=ifBaseWAWWsSetBasendxABaseW
7 3 6 sylan φAVW𝑠A=ifBaseWAWWsSetBasendxABaseW
8 df-base Base=Slot1
9 1 2 wunndx φndxU
10 8 1 9 wunstr φBasendxU
11 incom ABaseW=BaseWA
12 baseid Base=SlotBasendx
13 12 1 3 wunstr φBaseWU
14 1 13 wunin φBaseWAU
15 11 14 eqeltrid φABaseWU
16 1 10 15 wunop φBasendxABaseWU
17 1 3 16 wunsets φWsSetBasendxABaseWU
18 3 17 ifcld φifBaseWAWWsSetBasendxABaseWU
19 18 adantr φAVifBaseWAWWsSetBasendxABaseWU
20 7 19 eqeltrd φAVW𝑠AU
21 20 ex φAVW𝑠AU
22 1 wun0 φU
23 reldmress Reldom𝑠
24 23 ovprc2 ¬AVW𝑠A=
25 24 eleq1d ¬AVW𝑠AUU
26 22 25 syl5ibrcom φ¬AVW𝑠AU
27 21 26 pm2.61d φW𝑠AU