Metamath Proof Explorer


Theorem wwlksnextbij

Description: There is a bijection between the extensions of a walk (as word) by an edge and the set of vertices being connected to the trailing vertex of the walk. (Contributed by Alexander van der Vekens, 21-Aug-2018) (Revised by AV, 18-Apr-2021) (Revised by AV, 27-Oct-2022)

Ref Expression
Hypotheses wwlksnextbij.v V=VtxG
wwlksnextbij.e E=EdgG
Assertion wwlksnextbij WNWWalksNGff:wN+1WWalksNG|wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnE

Proof

Step Hyp Ref Expression
1 wwlksnextbij.v V=VtxG
2 wwlksnextbij.e E=EdgG
3 ovexd WNWWalksNGN+1WWalksNGV
4 rabexg N+1WWalksNGVtN+1WWalksNG|tprefixN+1=WlastSWlastStEV
5 mptexg tN+1WWalksNG|tprefixN+1=WlastSWlastStEVxtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSxV
6 3 4 5 3syl WNWWalksNGxtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSxV
7 eqid wWordV|w=N+2wprefixN+1=WlastSWlastSwE=wWordV|w=N+2wprefixN+1=WlastSWlastSwE
8 preq2 n=plastSWn=lastSWp
9 8 eleq1d n=plastSWnElastSWpE
10 9 cbvrabv nV|lastSWnE=pV|lastSWpE
11 fveqeq2 t=wt=N+2w=N+2
12 oveq1 t=wtprefixN+1=wprefixN+1
13 12 eqeq1d t=wtprefixN+1=WwprefixN+1=W
14 fveq2 t=wlastSt=lastSw
15 14 preq2d t=wlastSWlastSt=lastSWlastSw
16 15 eleq1d t=wlastSWlastStElastSWlastSwE
17 11 13 16 3anbi123d t=wt=N+2tprefixN+1=WlastSWlastStEw=N+2wprefixN+1=WlastSWlastSwE
18 17 cbvrabv tWordV|t=N+2tprefixN+1=WlastSWlastStE=wWordV|w=N+2wprefixN+1=WlastSWlastSwE
19 18 mpteq1i xtWordV|t=N+2tprefixN+1=WlastSWlastStElastSx=xwWordV|w=N+2wprefixN+1=WlastSWlastSwElastSx
20 1 2 7 10 19 wwlksnextbij0 WNWWalksNGxtWordV|t=N+2tprefixN+1=WlastSWlastStElastSx:wWordV|w=N+2wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnE
21 eqid tWordV|t=N+2tprefixN+1=WlastSWlastStE=tWordV|t=N+2tprefixN+1=WlastSWlastStE
22 1 2 21 wwlksnextwrd WNWWalksNGtWordV|t=N+2tprefixN+1=WlastSWlastStE=tN+1WWalksNG|tprefixN+1=WlastSWlastStE
23 22 eqcomd WNWWalksNGtN+1WWalksNG|tprefixN+1=WlastSWlastStE=tWordV|t=N+2tprefixN+1=WlastSWlastStE
24 23 mpteq1d WNWWalksNGxtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSx=xtWordV|t=N+2tprefixN+1=WlastSWlastStElastSx
25 1 2 7 wwlksnextwrd WNWWalksNGwWordV|w=N+2wprefixN+1=WlastSWlastSwE=wN+1WWalksNG|wprefixN+1=WlastSWlastSwE
26 25 eqcomd WNWWalksNGwN+1WWalksNG|wprefixN+1=WlastSWlastSwE=wWordV|w=N+2wprefixN+1=WlastSWlastSwE
27 eqidd WNWWalksNGnV|lastSWnE=nV|lastSWnE
28 24 26 27 f1oeq123d WNWWalksNGxtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSx:wN+1WWalksNG|wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnExtWordV|t=N+2tprefixN+1=WlastSWlastStElastSx:wWordV|w=N+2wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnE
29 20 28 mpbird WNWWalksNGxtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSx:wN+1WWalksNG|wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnE
30 f1oeq1 f=xtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSxf:wN+1WWalksNG|wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnExtN+1WWalksNG|tprefixN+1=WlastSWlastStElastSx:wN+1WWalksNG|wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnE
31 6 29 30 spcedv WNWWalksNGff:wN+1WWalksNG|wprefixN+1=WlastSWlastSwE1-1 ontonV|lastSWnE