Description: Rearrangement of 4 terms in a sum for extended addition, analogous to add4d . (Contributed by Alexander van der Vekens, 21-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | xadd4d.1 | |
|
xadd4d.2 | |
||
xadd4d.3 | |
||
xadd4d.4 | |
||
Assertion | xadd4d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadd4d.1 | |
|
2 | xadd4d.2 | |
|
3 | xadd4d.3 | |
|
4 | xadd4d.4 | |
|
5 | xaddass | |
|
6 | 3 2 4 5 | syl3anc | |
7 | 6 | oveq2d | |
8 | 3 | simpld | |
9 | 4 | simpld | |
10 | 8 9 | xaddcld | |
11 | xaddnemnf | |
|
12 | 3 4 11 | syl2anc | |
13 | xaddass | |
|
14 | 1 2 10 12 13 | syl112anc | |
15 | 2 | simpld | |
16 | xaddcom | |
|
17 | 8 15 16 | syl2anc | |
18 | 17 | oveq1d | |
19 | xaddass | |
|
20 | 2 3 4 19 | syl3anc | |
21 | 18 20 | eqtr2d | |
22 | 21 | oveq2d | |
23 | 14 22 | eqtrd | |
24 | 15 9 | xaddcld | |
25 | xaddnemnf | |
|
26 | 2 4 25 | syl2anc | |
27 | xaddass | |
|
28 | 1 3 24 26 27 | syl112anc | |
29 | 7 23 28 | 3eqtr4d | |