Metamath Proof Explorer


Theorem xblpnf

Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion xblpnf D∞MetXPXAPballD+∞AXPDA

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 elbl D∞MetXPX+∞*APballD+∞AXPDA<+∞
3 1 2 mp3an3 D∞MetXPXAPballD+∞AXPDA<+∞
4 xmetcl D∞MetXPXAXPDA*
5 xmetge0 D∞MetXPXAX0PDA
6 ge0nemnf PDA*0PDAPDA−∞
7 4 5 6 syl2anc D∞MetXPXAXPDA−∞
8 ngtmnft PDA*PDA=−∞¬−∞<PDA
9 4 8 syl D∞MetXPXAXPDA=−∞¬−∞<PDA
10 9 necon2abid D∞MetXPXAX−∞<PDAPDA−∞
11 7 10 mpbird D∞MetXPXAX−∞<PDA
12 11 biantrurd D∞MetXPXAXPDA<+∞−∞<PDAPDA<+∞
13 xrrebnd PDA*PDA−∞<PDAPDA<+∞
14 4 13 syl D∞MetXPXAXPDA−∞<PDAPDA<+∞
15 12 14 bitr4d D∞MetXPXAXPDA<+∞PDA
16 15 3expa D∞MetXPXAXPDA<+∞PDA
17 16 pm5.32da D∞MetXPXAXPDA<+∞AXPDA
18 3 17 bitrd D∞MetXPXAPballD+∞AXPDA