Metamath Proof Explorer


Theorem xblpnfps

Description: The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Assertion xblpnfps DPsMetXPXAPballD+∞AXPDA

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 elblps DPsMetXPX+∞*APballD+∞AXPDA<+∞
3 1 2 mp3an3 DPsMetXPXAPballD+∞AXPDA<+∞
4 psmetcl DPsMetXPXAXPDA*
5 psmetge0 DPsMetXPXAX0PDA
6 ge0nemnf PDA*0PDAPDA−∞
7 4 5 6 syl2anc DPsMetXPXAXPDA−∞
8 ngtmnft PDA*PDA=−∞¬−∞<PDA
9 4 8 syl DPsMetXPXAXPDA=−∞¬−∞<PDA
10 9 necon2abid DPsMetXPXAX−∞<PDAPDA−∞
11 7 10 mpbird DPsMetXPXAX−∞<PDA
12 11 biantrurd DPsMetXPXAXPDA<+∞−∞<PDAPDA<+∞
13 xrrebnd PDA*PDA−∞<PDAPDA<+∞
14 4 13 syl DPsMetXPXAXPDA−∞<PDAPDA<+∞
15 12 14 bitr4d DPsMetXPXAXPDA<+∞PDA
16 15 3expa DPsMetXPXAXPDA<+∞PDA
17 16 pm5.32da DPsMetXPXAXPDA<+∞AXPDA
18 3 17 bitrd DPsMetXPXAPballD+∞AXPDA