Metamath Proof Explorer


Theorem xltmul1

Description: Extended real version of ltmul1 . (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xltmul1 A*B*C+A<BA𝑒C<B𝑒C

Proof

Step Hyp Ref Expression
1 xlemul1 B*A*C+BAB𝑒CA𝑒C
2 1 3com12 A*B*C+BAB𝑒CA𝑒C
3 2 notbid A*B*C+¬BA¬B𝑒CA𝑒C
4 xrltnle A*B*A<B¬BA
5 4 3adant3 A*B*C+A<B¬BA
6 simp1 A*B*C+A*
7 rpxr C+C*
8 7 3ad2ant3 A*B*C+C*
9 xmulcl A*C*A𝑒C*
10 6 8 9 syl2anc A*B*C+A𝑒C*
11 simp2 A*B*C+B*
12 xmulcl B*C*B𝑒C*
13 11 8 12 syl2anc A*B*C+B𝑒C*
14 xrltnle A𝑒C*B𝑒C*A𝑒C<B𝑒C¬B𝑒CA𝑒C
15 10 13 14 syl2anc A*B*C+A𝑒C<B𝑒C¬B𝑒CA𝑒C
16 3 5 15 3bitr4d A*B*C+A<BA𝑒C<B𝑒C