Metamath Proof Explorer


Theorem xmeterval

Description: Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 ˙=D-1
Assertion xmeterval D∞MetXA˙BAXBXADB

Proof

Step Hyp Ref Expression
1 xmeter.1 ˙=D-1
2 xmetf D∞MetXD:X×X*
3 ffn D:X×X*DFnX×X
4 elpreima DFnX×XABD-1ABX×XDAB
5 2 3 4 3syl D∞MetXABD-1ABX×XDAB
6 1 breqi A˙BAD-1B
7 df-br AD-1BABD-1
8 6 7 bitri A˙BABD-1
9 df-3an AXBXADBAXBXADB
10 opelxp ABX×XAXBX
11 10 bicomi AXBXABX×X
12 df-ov ADB=DAB
13 12 eleq1i ADBDAB
14 11 13 anbi12i AXBXADBABX×XDAB
15 9 14 bitri AXBXADBABX×XDAB
16 5 8 15 3bitr4g D∞MetXA˙BAXBXADB