Description: Lemma for rexmul . (Contributed by Mario Carneiro, 20-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | xmullem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ioran | |
|
2 | 1 | anbi2i | |
3 | ioran | |
|
4 | ioran | |
|
5 | ioran | |
|
6 | 4 5 | anbi12i | |
7 | 3 6 | bitri | |
8 | ioran | |
|
9 | ioran | |
|
10 | ioran | |
|
11 | 9 10 | anbi12i | |
12 | 8 11 | bitri | |
13 | 7 12 | anbi12i | |
14 | simplll | |
|
15 | elxr | |
|
16 | 14 15 | sylib | |
17 | idd | |
|
18 | simprlr | |
|
19 | 18 | adantl | |
20 | 19 | pm2.21d | |
21 | 20 | expdimp | |
22 | simplrr | |
|
23 | 22 | pm2.21d | |
24 | 23 | imp | |
25 | simplll | |
|
26 | 25 | adantl | |
27 | 26 | pm2.21d | |
28 | 27 | expdimp | |
29 | simpllr | |
|
30 | 0xr | |
|
31 | xrltso | |
|
32 | solin | |
|
33 | 31 32 | mpan | |
34 | 29 30 33 | sylancl | |
35 | 21 24 28 34 | mpjao3dan | |
36 | simpllr | |
|
37 | 36 | adantl | |
38 | 37 | pm2.21d | |
39 | 38 | expdimp | |
40 | 22 | pm2.21d | |
41 | 40 | imp | |
42 | simprll | |
|
43 | 42 | adantl | |
44 | 43 | pm2.21d | |
45 | 44 | expdimp | |
46 | 39 41 45 34 | mpjao3dan | |
47 | 17 35 46 | 3jaod | |
48 | 16 47 | mpd | |
49 | 2 13 48 | syl2anb | |
50 | 49 | anassrs | |