Metamath Proof Explorer


Theorem xmulval

Description: Value of the extended real multiplication operation. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion xmulval A*B*A𝑒B=ifA=0B=00if0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞+∞if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞AB

Proof

Step Hyp Ref Expression
1 simpl x=Ay=Bx=A
2 1 eqeq1d x=Ay=Bx=0A=0
3 simpr x=Ay=By=B
4 3 eqeq1d x=Ay=By=0B=0
5 2 4 orbi12d x=Ay=Bx=0y=0A=0B=0
6 3 breq2d x=Ay=B0<y0<B
7 1 eqeq1d x=Ay=Bx=+∞A=+∞
8 6 7 anbi12d x=Ay=B0<yx=+∞0<BA=+∞
9 3 breq1d x=Ay=By<0B<0
10 1 eqeq1d x=Ay=Bx=−∞A=−∞
11 9 10 anbi12d x=Ay=By<0x=−∞B<0A=−∞
12 8 11 orbi12d x=Ay=B0<yx=+∞y<0x=−∞0<BA=+∞B<0A=−∞
13 1 breq2d x=Ay=B0<x0<A
14 3 eqeq1d x=Ay=By=+∞B=+∞
15 13 14 anbi12d x=Ay=B0<xy=+∞0<AB=+∞
16 1 breq1d x=Ay=Bx<0A<0
17 3 eqeq1d x=Ay=By=−∞B=−∞
18 16 17 anbi12d x=Ay=Bx<0y=−∞A<0B=−∞
19 15 18 orbi12d x=Ay=B0<xy=+∞x<0y=−∞0<AB=+∞A<0B=−∞
20 12 19 orbi12d x=Ay=B0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞
21 6 10 anbi12d x=Ay=B0<yx=−∞0<BA=−∞
22 9 7 anbi12d x=Ay=By<0x=+∞B<0A=+∞
23 21 22 orbi12d x=Ay=B0<yx=−∞y<0x=+∞0<BA=−∞B<0A=+∞
24 13 17 anbi12d x=Ay=B0<xy=−∞0<AB=−∞
25 16 14 anbi12d x=Ay=Bx<0y=+∞A<0B=+∞
26 24 25 orbi12d x=Ay=B0<xy=−∞x<0y=+∞0<AB=−∞A<0B=+∞
27 23 26 orbi12d x=Ay=B0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞
28 oveq12 x=Ay=Bxy=AB
29 27 28 ifbieq2d x=Ay=Bif0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy=if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞AB
30 20 29 ifbieq2d x=Ay=Bif0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy=if0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞+∞if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞AB
31 5 30 ifbieq2d x=Ay=Bifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy=ifA=0B=00if0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞+∞if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞AB
32 df-xmul 𝑒=x*,y*ifx=0y=00if0<yx=+∞y<0x=−∞0<xy=+∞x<0y=−∞+∞if0<yx=−∞y<0x=+∞0<xy=−∞x<0y=+∞−∞xy
33 c0ex 0V
34 pnfex +∞V
35 mnfxr −∞*
36 35 elexi −∞V
37 ovex ABV
38 36 37 ifex if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞ABV
39 34 38 ifex if0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞+∞if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞ABV
40 33 39 ifex ifA=0B=00if0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞+∞if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞ABV
41 31 32 40 ovmpoa A*B*A𝑒B=ifA=0B=00if0<BA=+∞B<0A=−∞0<AB=+∞A<0B=−∞+∞if0<BA=−∞B<0A=+∞0<AB=−∞A<0B=+∞−∞AB