Metamath Proof Explorer


Theorem xpsrngd

Description: A product of two non-unital rings is a non-unital ring ( xpsmnd analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses xpsrngd.y Y=S×𝑠R
xpsrngd.s φSRng
xpsrngd.r φRRng
Assertion xpsrngd φYRng

Proof

Step Hyp Ref Expression
1 xpsrngd.y Y=S×𝑠R
2 xpsrngd.s φSRng
3 xpsrngd.r φRRng
4 eqid BaseS=BaseS
5 eqid BaseR=BaseR
6 eqid xBaseS,yBaseRx1𝑜y=xBaseS,yBaseRx1𝑜y
7 eqid ScalarS=ScalarS
8 eqid ScalarS𝑠S1𝑜R=ScalarS𝑠S1𝑜R
9 1 4 5 2 3 6 7 8 xpsval φY=xBaseS,yBaseRx1𝑜y-1𝑠ScalarS𝑠S1𝑜R
10 6 xpsff1o2 xBaseS,yBaseRx1𝑜y:BaseS×BaseR1-1 ontoranxBaseS,yBaseRx1𝑜y
11 1 4 5 2 3 6 7 8 xpsrnbas φranxBaseS,yBaseRx1𝑜y=BaseScalarS𝑠S1𝑜R
12 11 f1oeq3d φxBaseS,yBaseRx1𝑜y:BaseS×BaseR1-1 ontoranxBaseS,yBaseRx1𝑜yxBaseS,yBaseRx1𝑜y:BaseS×BaseR1-1 ontoBaseScalarS𝑠S1𝑜R
13 10 12 mpbii φxBaseS,yBaseRx1𝑜y:BaseS×BaseR1-1 ontoBaseScalarS𝑠S1𝑜R
14 f1ocnv xBaseS,yBaseRx1𝑜y:BaseS×BaseR1-1 ontoBaseScalarS𝑠S1𝑜RxBaseS,yBaseRx1𝑜y-1:BaseScalarS𝑠S1𝑜R1-1 ontoBaseS×BaseR
15 f1of1 xBaseS,yBaseRx1𝑜y-1:BaseScalarS𝑠S1𝑜R1-1 ontoBaseS×BaseRxBaseS,yBaseRx1𝑜y-1:BaseScalarS𝑠S1𝑜R1-1BaseS×BaseR
16 13 14 15 3syl φxBaseS,yBaseRx1𝑜y-1:BaseScalarS𝑠S1𝑜R1-1BaseS×BaseR
17 2on 2𝑜On
18 17 a1i φ2𝑜On
19 fvexd φScalarSV
20 xpscf S1𝑜R:2𝑜RngSRngRRng
21 2 3 20 sylanbrc φS1𝑜R:2𝑜Rng
22 8 18 19 21 prdsrngd φScalarS𝑠S1𝑜RRng
23 eqid xBaseS,yBaseRx1𝑜y-1𝑠ScalarS𝑠S1𝑜R=xBaseS,yBaseRx1𝑜y-1𝑠ScalarS𝑠S1𝑜R
24 eqid BaseScalarS𝑠S1𝑜R=BaseScalarS𝑠S1𝑜R
25 23 24 imasrngf1 xBaseS,yBaseRx1𝑜y-1:BaseScalarS𝑠S1𝑜R1-1BaseS×BaseRScalarS𝑠S1𝑜RRngxBaseS,yBaseRx1𝑜y-1𝑠ScalarS𝑠S1𝑜RRng
26 16 22 25 syl2anc φxBaseS,yBaseRx1𝑜y-1𝑠ScalarS𝑠S1𝑜RRng
27 9 26 eqeltrd φYRng