Metamath Proof Explorer


Theorem xpsspw

Description: A Cartesian product is included in the power of the power of the union of its arguments. (Contributed by NM, 13-Sep-2006)

Ref Expression
Assertion xpsspw A×B𝒫𝒫AB

Proof

Step Hyp Ref Expression
1 relxp RelA×B
2 opelxp xyA×BxAyB
3 snssi xAxA
4 ssun3 xAxAB
5 3 4 syl xAxAB
6 vsnex xV
7 6 elpw x𝒫ABxAB
8 5 7 sylibr xAx𝒫AB
9 8 adantr xAyBx𝒫AB
10 df-pr xy=xy
11 snssi yByB
12 ssun4 yByAB
13 11 12 syl yByAB
14 5 13 anim12i xAyBxAByAB
15 unss xAByABxyAB
16 14 15 sylib xAyBxyAB
17 10 16 eqsstrid xAyBxyAB
18 zfpair2 xyV
19 18 elpw xy𝒫ABxyAB
20 17 19 sylibr xAyBxy𝒫AB
21 9 20 jca xAyBx𝒫ABxy𝒫AB
22 prex xxyV
23 22 elpw xxy𝒫𝒫ABxxy𝒫AB
24 vex xV
25 vex yV
26 24 25 dfop xy=xxy
27 26 eleq1i xy𝒫𝒫ABxxy𝒫𝒫AB
28 6 18 prss x𝒫ABxy𝒫ABxxy𝒫AB
29 23 27 28 3bitr4ri x𝒫ABxy𝒫ABxy𝒫𝒫AB
30 21 29 sylib xAyBxy𝒫𝒫AB
31 2 30 sylbi xyA×Bxy𝒫𝒫AB
32 1 31 relssi A×B𝒫𝒫AB