Metamath Proof Explorer


Theorem xrge0cmn

Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion xrge0cmn 𝑠*𝑠0+∞CMnd

Proof

Step Hyp Ref Expression
1 eqid 𝑠*𝑠*−∞=𝑠*𝑠*−∞
2 1 xrs1cmn 𝑠*𝑠*−∞CMnd
3 1 xrge0subm 0+∞SubMnd𝑠*𝑠*−∞
4 xrex *V
5 4 difexi *−∞V
6 difss *−∞*
7 xrsbas *=Base𝑠*
8 1 7 ressbas2 *−∞**−∞=Base𝑠*𝑠*−∞
9 6 8 ax-mp *−∞=Base𝑠*𝑠*−∞
10 9 submss 0+∞SubMnd𝑠*𝑠*−∞0+∞*−∞
11 3 10 ax-mp 0+∞*−∞
12 ressabs *−∞V0+∞*−∞𝑠*𝑠*−∞𝑠0+∞=𝑠*𝑠0+∞
13 5 11 12 mp2an 𝑠*𝑠*−∞𝑠0+∞=𝑠*𝑠0+∞
14 13 eqcomi 𝑠*𝑠0+∞=𝑠*𝑠*−∞𝑠0+∞
15 14 submmnd 0+∞SubMnd𝑠*𝑠*−∞𝑠*𝑠0+∞Mnd
16 3 15 ax-mp 𝑠*𝑠0+∞Mnd
17 14 subcmn 𝑠*𝑠*−∞CMnd𝑠*𝑠0+∞Mnd𝑠*𝑠0+∞CMnd
18 2 16 17 mp2an 𝑠*𝑠0+∞CMnd