Metamath Proof Explorer


Theorem xrge0infssd

Description: Inequality deduction for infimum of a nonnegative extended real subset. (Contributed by Thierry Arnoux, 16-Sep-2019) (Revised by AV, 4-Oct-2020)

Ref Expression
Hypotheses xrge0infssd.1 φCB
xrge0infssd.2 φB0+∞
Assertion xrge0infssd φsupB0+∞<supC0+∞<

Proof

Step Hyp Ref Expression
1 xrge0infssd.1 φCB
2 xrge0infssd.2 φB0+∞
3 iccssxr 0+∞*
4 xrltso <Or*
5 soss 0+∞*<Or*<Or0+∞
6 3 4 5 mp2 <Or0+∞
7 6 a1i φ<Or0+∞
8 xrge0infss B0+∞x0+∞yB¬y<xy0+∞x<yzBz<y
9 2 8 syl φx0+∞yB¬y<xy0+∞x<yzBz<y
10 7 9 infcl φsupB0+∞<0+∞
11 3 10 sselid φsupB0+∞<*
12 1 2 sstrd φC0+∞
13 xrge0infss C0+∞x0+∞yC¬y<xy0+∞x<yzCz<y
14 12 13 syl φx0+∞yC¬y<xy0+∞x<yzCz<y
15 7 14 infcl φsupC0+∞<0+∞
16 3 15 sselid φsupC0+∞<*
17 7 1 14 9 infssd φ¬supC0+∞<<supB0+∞<
18 11 16 17 xrnltled φsupB0+∞<supC0+∞<