Metamath Proof Explorer


Theorem xrre

Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006)

Ref Expression
Assertion xrre A*B−∞<AABA

Proof

Step Hyp Ref Expression
1 simprl A*B−∞<AAB−∞<A
2 ltpnf BB<+∞
3 2 adantl A*BB<+∞
4 rexr BB*
5 pnfxr +∞*
6 xrlelttr A*B*+∞*ABB<+∞A<+∞
7 5 6 mp3an3 A*B*ABB<+∞A<+∞
8 4 7 sylan2 A*BABB<+∞A<+∞
9 3 8 mpan2d A*BABA<+∞
10 9 imp A*BABA<+∞
11 10 adantrl A*B−∞<AABA<+∞
12 xrrebnd A*A−∞<AA<+∞
13 12 ad2antrr A*B−∞<AABA−∞<AA<+∞
14 1 11 13 mpbir2and A*B−∞<AABA