Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | xrre | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl | |
|
2 | ltpnf | |
|
3 | 2 | adantl | |
4 | rexr | |
|
5 | pnfxr | |
|
6 | xrlelttr | |
|
7 | 5 6 | mp3an3 | |
8 | 4 7 | sylan2 | |
9 | 3 8 | mpan2d | |
10 | 9 | imp | |
11 | 10 | adantrl | |
12 | xrrebnd | |
|
13 | 12 | ad2antrr | |
14 | 1 11 13 | mpbir2and | |