Metamath Proof Explorer


Theorem znchr

Description: Cyclic rings are defined by their characteristic. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypothesis znchr.y Y=/N
Assertion znchr N0chrY=N

Proof

Step Hyp Ref Expression
1 znchr.y Y=/N
2 1 zncrng N0YCRing
3 crngring YCRingYRing
4 2 3 syl N0YRing
5 nn0z x0x
6 eqid chrY=chrY
7 eqid ℤRHomY=ℤRHomY
8 eqid 0Y=0Y
9 6 7 8 chrdvds YRingxchrYxℤRHomYx=0Y
10 4 5 9 syl2an N0x0chrYxℤRHomYx=0Y
11 1 7 8 zndvds0 N0xℤRHomYx=0YNx
12 5 11 sylan2 N0x0ℤRHomYx=0YNx
13 10 12 bitrd N0x0chrYxNx
14 13 ralrimiva N0x0chrYxNx
15 6 chrcl YRingchrY0
16 4 15 syl N0chrY0
17 dvdsext chrY0N0chrY=Nx0chrYxNx
18 16 17 mpancom N0chrY=Nx0chrYxNx
19 14 18 mpbird N0chrY=N