Metamath Proof Explorer


Theorem znle

Description: The value of the Z/nZ structure. It is defined as the quotient ring ZZ / n ZZ , with an "artificial" ordering added to make it a Toset . (In other words, Z/nZ is aring with anorder , but it is not anordered ring , which as a term implies that the order is compatible with the ring operations in some way.) (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znval.s S=RSpanring
znval.u U=ring/𝑠ring~QGSN
znval.y Y=/N
znval.f F=ℤRHomUW
znval.w W=ifN=00..^N
znle.l ˙=Y
Assertion znle N0˙=FF-1

Proof

Step Hyp Ref Expression
1 znval.s S=RSpanring
2 znval.u U=ring/𝑠ring~QGSN
3 znval.y Y=/N
4 znval.f F=ℤRHomUW
5 znval.w W=ifN=00..^N
6 znle.l ˙=Y
7 eqid FF-1=FF-1
8 1 2 3 4 5 7 znval N0Y=UsSetndxFF-1
9 8 fveq2d N0Y=UsSetndxFF-1
10 2 ovexi UV
11 fvex ℤRHomUV
12 11 resex ℤRHomUWV
13 4 12 eqeltri FV
14 xrex *V
15 14 14 xpex *×*V
16 lerelxr *×*
17 15 16 ssexi V
18 13 17 coex FV
19 13 cnvex F-1V
20 18 19 coex FF-1V
21 pleid le=Slotndx
22 21 setsid UVFF-1VFF-1=UsSetndxFF-1
23 10 20 22 mp2an FF-1=UsSetndxFF-1
24 9 6 23 3eqtr4g N0˙=FF-1