Metamath Proof Explorer


Theorem zofldiv2ALTV

Description: The floor of an odd numer divided by 2 is equal to the odd number first decreased by 1 and then divided by 2. (Contributed by AV, 7-Jun-2020) (Revised by AV, 18-Jun-2020)

Ref Expression
Assertion zofldiv2ALTV NOddN2=N12

Proof

Step Hyp Ref Expression
1 oddz NOddN
2 1 zcnd NOddN
3 npcan1 NN-1+1=N
4 3 eqcomd NN=N-1+1
5 4 oveq1d NN2=N-1+12
6 peano2cnm NN1
7 1cnd N1
8 2cnne0 220
9 8 a1i N220
10 divdir N11220N-1+12=N12+12
11 6 7 9 10 syl3anc NN-1+12=N12+12
12 5 11 eqtrd NN2=N12+12
13 2 12 syl NOddN2=N12+12
14 13 fveq2d NOddN2=N12+12
15 halfge0 012
16 halflt1 12<1
17 15 16 pm3.2i 01212<1
18 oddm1div2z NOddN12
19 halfre 12
20 flbi2 N1212N12+12=N1201212<1
21 18 19 20 sylancl NOddN12+12=N1201212<1
22 17 21 mpbiri NOddN12+12=N12
23 14 22 eqtrd NOddN2=N12