Metamath Proof Explorer


Theorem zorn2lem5

Description: Lemma for zorn2 . (Contributed by NM, 4-Apr-1997) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Hypotheses zorn2lem.3 F=recsfVιvC|uC¬uwv
zorn2lem.4 C=zA|granfgRz
zorn2lem.5 D=zA|gFxgRz
zorn2lem.7 H=zA|gFygRz
Assertion zorn2lem5 wWeAxOnyxHFxA

Proof

Step Hyp Ref Expression
1 zorn2lem.3 F=recsfVιvC|uC¬uwv
2 zorn2lem.4 C=zA|granfgRz
3 zorn2lem.5 D=zA|gFxgRz
4 zorn2lem.7 H=zA|gFygRz
5 1 tfr1 FFnOn
6 fnfun FFnOnFunF
7 5 6 ax-mp FunF
8 fvelima FunFsFxyxFy=s
9 7 8 mpan sFxyxFy=s
10 nfv ywWeAxOn
11 nfra1 yyxH
12 10 11 nfan ywWeAxOnyxH
13 nfv ysA
14 df-ral yxHyyxH
15 onelon xOnyxyOn
16 4 ssrab3 HA
17 1 2 4 zorn2lem1 yOnwWeAHFyH
18 16 17 sselid yOnwWeAHFyA
19 eleq1 Fy=sFyAsA
20 18 19 imbitrid Fy=syOnwWeAHsA
21 15 20 sylani Fy=sxOnyxwWeAHsA
22 21 com12 xOnyxwWeAHFy=ssA
23 22 exp43 xOnyxwWeAHFy=ssA
24 23 com3r wWeAxOnyxHFy=ssA
25 24 imp wWeAxOnyxHFy=ssA
26 25 a2d wWeAxOnyxHyxFy=ssA
27 26 spsd wWeAxOnyyxHyxFy=ssA
28 14 27 biimtrid wWeAxOnyxHyxFy=ssA
29 28 imp wWeAxOnyxHyxFy=ssA
30 12 13 29 rexlimd wWeAxOnyxHyxFy=ssA
31 9 30 syl5 wWeAxOnyxHsFxsA
32 31 ssrdv wWeAxOnyxHFxA