Metamath Proof Explorer


Theorem zsqrtelqelz

Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion zsqrtelqelz AAA

Proof

Step Hyp Ref Expression
1 qdencl AdenomA
2 1 adantl AAdenomA
3 2 nnred AAdenomA
4 1red AA1
5 2 nnnn0d AAdenomA0
6 5 nn0ge0d AA0denomA
7 0le1 01
8 7 a1i AA01
9 sq1 12=1
10 9 a1i AA12=1
11 zcn AA
12 11 sqsqrtd AA2=A
13 12 adantr AAA2=A
14 13 fveq2d AAdenomA2=denomA
15 simpl AAA
16 zq AA
17 16 adantr AAA
18 qden1elz AdenomA=1A
19 17 18 syl AAdenomA=1A
20 15 19 mpbird AAdenomA=1
21 14 20 eqtrd AAdenomA2=1
22 densq AdenomA2=denomA2
23 22 adantl AAdenomA2=denomA2
24 10 21 23 3eqtr2rd AAdenomA2=12
25 3 4 6 8 24 sq11d AAdenomA=1
26 qden1elz AdenomA=1A
27 26 adantl AAdenomA=1A
28 25 27 mpbid AAA