| Step |
Hyp |
Ref |
Expression |
| 1 |
|
acosval |
⊢ ( 𝐴 ∈ ℂ → ( arccos ‘ 𝐴 ) = ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) |
| 2 |
1
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) = ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) ) |
| 3 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 4 |
3
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
| 5 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
| 6 |
|
resub |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 7 |
4 5 6
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 8 |
|
rere |
⊢ ( ( π / 2 ) ∈ ℝ → ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) ) |
| 9 |
3 8
|
ax-mp |
⊢ ( ℜ ‘ ( π / 2 ) ) = ( π / 2 ) |
| 10 |
9
|
oveq1i |
⊢ ( ( ℜ ‘ ( π / 2 ) ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 11 |
7 10
|
eqtrdi |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( ( π / 2 ) − ( arcsin ‘ 𝐴 ) ) ) = ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 12 |
2 11
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) = ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 13 |
5
|
recld |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) |
| 14 |
|
resubcl |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 15 |
3 13 14
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ℝ ) |
| 16 |
|
asinbnd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ) |
| 17 |
|
neghalfpire |
⊢ - ( π / 2 ) ∈ ℝ |
| 18 |
17 3
|
elicc2i |
⊢ ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ( - ( π / 2 ) [,] ( π / 2 ) ) ↔ ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 19 |
16 18
|
sylib |
⊢ ( 𝐴 ∈ ℂ → ( ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ∧ - ( π / 2 ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 20 |
19
|
simp3d |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) |
| 21 |
|
subge0 |
⊢ ( ( ( π / 2 ) ∈ ℝ ∧ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ∈ ℝ ) → ( 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ↔ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 22 |
3 13 21
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ↔ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ≤ ( π / 2 ) ) ) |
| 23 |
20 22
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ) |
| 24 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( π / 2 ) ∈ ℝ ) |
| 25 |
|
pire |
⊢ π ∈ ℝ |
| 26 |
25
|
a1i |
⊢ ( 𝐴 ∈ ℂ → π ∈ ℝ ) |
| 27 |
25
|
recni |
⊢ π ∈ ℂ |
| 28 |
17
|
recni |
⊢ - ( π / 2 ) ∈ ℂ |
| 29 |
27 4
|
negsubi |
⊢ ( π + - ( π / 2 ) ) = ( π − ( π / 2 ) ) |
| 30 |
|
pidiv2halves |
⊢ ( ( π / 2 ) + ( π / 2 ) ) = π |
| 31 |
27 4 4 30
|
subaddrii |
⊢ ( π − ( π / 2 ) ) = ( π / 2 ) |
| 32 |
29 31
|
eqtri |
⊢ ( π + - ( π / 2 ) ) = ( π / 2 ) |
| 33 |
4 27 28 32
|
subaddrii |
⊢ ( ( π / 2 ) − π ) = - ( π / 2 ) |
| 34 |
19
|
simp2d |
⊢ ( 𝐴 ∈ ℂ → - ( π / 2 ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 35 |
33 34
|
eqbrtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − π ) ≤ ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) |
| 36 |
24 26 13 35
|
subled |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ≤ π ) |
| 37 |
|
0re |
⊢ 0 ∈ ℝ |
| 38 |
37 25
|
elicc2i |
⊢ ( ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ↔ ( ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ℝ ∧ 0 ≤ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∧ ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ≤ π ) ) |
| 39 |
15 23 36 38
|
syl3anbrc |
⊢ ( 𝐴 ∈ ℂ → ( ( π / 2 ) − ( ℜ ‘ ( arcsin ‘ 𝐴 ) ) ) ∈ ( 0 [,] π ) ) |
| 40 |
12 39
|
eqeltrd |
⊢ ( 𝐴 ∈ ℂ → ( ℜ ‘ ( arccos ‘ 𝐴 ) ) ∈ ( 0 [,] π ) ) |