Metamath Proof Explorer


Theorem acosbnd

Description: The arccosine function has range within a vertical strip of the complex plane with real part between 0 and _pi . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion acosbnd AarccosA0π

Proof

Step Hyp Ref Expression
1 acosval AarccosA=π2arcsinA
2 1 fveq2d AarccosA=π2arcsinA
3 halfpire π2
4 3 recni π2
5 asincl AarcsinA
6 resub π2arcsinAπ2arcsinA=π2arcsinA
7 4 5 6 sylancr Aπ2arcsinA=π2arcsinA
8 rere π2π2=π2
9 3 8 ax-mp π2=π2
10 9 oveq1i π2arcsinA=π2arcsinA
11 7 10 eqtrdi Aπ2arcsinA=π2arcsinA
12 2 11 eqtrd AarccosA=π2arcsinA
13 5 recld AarcsinA
14 resubcl π2arcsinAπ2arcsinA
15 3 13 14 sylancr Aπ2arcsinA
16 asinbnd AarcsinAπ2π2
17 neghalfpire π2
18 17 3 elicc2i arcsinAπ2π2arcsinAπ2arcsinAarcsinAπ2
19 16 18 sylib AarcsinAπ2arcsinAarcsinAπ2
20 19 simp3d AarcsinAπ2
21 subge0 π2arcsinA0π2arcsinAarcsinAπ2
22 3 13 21 sylancr A0π2arcsinAarcsinAπ2
23 20 22 mpbird A0π2arcsinA
24 3 a1i Aπ2
25 pire π
26 25 a1i Aπ
27 25 recni π
28 17 recni π2
29 27 4 negsubi π+π2=ππ2
30 pidiv2halves π2+π2=π
31 27 4 4 30 subaddrii ππ2=π2
32 29 31 eqtri π+π2=π2
33 4 27 28 32 subaddrii π2π=π2
34 19 simp2d Aπ2arcsinA
35 33 34 eqbrtrid Aπ2πarcsinA
36 24 26 13 35 subled Aπ2arcsinAπ
37 0re 0
38 37 25 elicc2i π2arcsinA0ππ2arcsinA0π2arcsinAπ2arcsinAπ
39 15 23 36 38 syl3anbrc Aπ2arcsinA0π
40 12 39 eqeltrd AarccosA0π