| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsdilem.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
addsdilem.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
addsdilem.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 4 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
| 6 |
2 3
|
addscut2 |
⊢ ( 𝜑 → ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) <<s ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) ) |
| 7 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
| 8 |
1 7
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
| 9 |
8
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ) |
| 10 |
|
addsval2 |
⊢ ( ( 𝐵 ∈ No ∧ 𝐶 ∈ No ) → ( 𝐵 +s 𝐶 ) = ( ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) |s ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) ) ) |
| 11 |
2 3 10
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) = ( ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) |s ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) ) ) |
| 12 |
5 6 9 11
|
mulsunif |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |s ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) ) ) |
| 13 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } |
| 14 |
|
r19.43 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
| 15 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 16 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝑦𝐿 +s 𝐶 ) ↔ 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ) ) |
| 17 |
16
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ) ) |
| 18 |
17
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 19 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 20 |
|
ovex |
⊢ ( 𝑦𝐿 +s 𝐶 ) ∈ V |
| 21 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 23 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) |
| 24 |
22 23
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 25 |
24
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) ) |
| 26 |
20 25
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 27 |
26
|
rexbii |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 28 |
|
r19.41v |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 29 |
28
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 30 |
19 27 29
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 31 |
18 30
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 32 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝐵 +s 𝑧𝐿 ) ↔ 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ) ) |
| 33 |
32
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ) ) |
| 34 |
33
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 35 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 36 |
|
ovex |
⊢ ( 𝐵 +s 𝑧𝐿 ) ∈ V |
| 37 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) |
| 40 |
38 39
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
| 42 |
36 41
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 43 |
42
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 44 |
|
r19.41v |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 45 |
44
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 46 |
35 43 45
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 47 |
34 46
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 48 |
31 47
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
| 49 |
15 48
|
bitr2i |
⊢ ( ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
| 50 |
49
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
| 51 |
14 50
|
bitr3i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
| 52 |
51
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
| 53 |
13 52
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
| 54 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } |
| 55 |
|
r19.43 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
| 56 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 57 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝑦𝑅 +s 𝐶 ) ↔ 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ) ) |
| 58 |
57
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ) ) |
| 59 |
58
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 60 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 61 |
|
ovex |
⊢ ( 𝑦𝑅 +s 𝐶 ) ∈ V |
| 62 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) |
| 63 |
62
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 64 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) |
| 65 |
63 64
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 66 |
65
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) ) |
| 67 |
61 66
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 68 |
67
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 69 |
|
r19.41v |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 70 |
69
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 71 |
60 68 70
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 72 |
59 71
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 73 |
|
eqeq1 |
⊢ ( 𝑡 = 𝑏 → ( 𝑡 = ( 𝐵 +s 𝑧𝑅 ) ↔ 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ) ) |
| 74 |
73
|
rexbidv |
⊢ ( 𝑡 = 𝑏 → ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ) ) |
| 75 |
74
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 76 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 77 |
|
ovex |
⊢ ( 𝐵 +s 𝑧𝑅 ) ∈ V |
| 78 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝐴 ·s 𝑏 ) = ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) |
| 79 |
78
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 80 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) |
| 81 |
79 80
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 82 |
81
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
| 83 |
77 82
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 84 |
83
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 85 |
|
r19.41v |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 86 |
85
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 87 |
76 84 86
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 88 |
75 87
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 89 |
72 88
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
| 90 |
56 89
|
bitr2i |
⊢ ( ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
| 91 |
90
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
| 92 |
55 91
|
bitr3i |
⊢ ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
| 93 |
92
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
| 94 |
54 93
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
| 95 |
53 94
|
uneq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |
| 96 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } |
| 97 |
|
r19.43 |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
| 98 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 99 |
58
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 100 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 101 |
62
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 102 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) |
| 103 |
101 102
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 104 |
103
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) ) |
| 105 |
61 104
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 106 |
105
|
rexbii |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 107 |
|
r19.41v |
⊢ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 108 |
107
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 109 |
100 106 108
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑏 = ( 𝑦𝑅 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 110 |
99 109
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ) |
| 111 |
74
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 112 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 113 |
78
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 114 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑥𝐿 ·s 𝑏 ) = ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) |
| 115 |
113 114
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 116 |
115
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) → ( 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
| 117 |
77 116
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 118 |
117
|
rexbii |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 119 |
|
r19.41v |
⊢ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 120 |
119
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ) |
| 121 |
112 118 120
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝑅 ) ∧ 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 122 |
111 121
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ↔ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) |
| 123 |
110 122
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ) |
| 124 |
98 123
|
bitr2i |
⊢ ( ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
| 125 |
124
|
rexbii |
⊢ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ( ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
| 126 |
97 125
|
bitr3i |
⊢ ( ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) ↔ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) ) |
| 127 |
126
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
| 128 |
96 127
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } |
| 129 |
|
unab |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } |
| 130 |
|
r19.43 |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
| 131 |
|
rexun |
⊢ ( ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 132 |
17
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 133 |
|
rexcom4 |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 134 |
21
|
oveq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 135 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) |
| 136 |
134 135
|
oveq12d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 137 |
136
|
eqeq2d |
⊢ ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) ) |
| 138 |
20 137
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 139 |
138
|
rexbii |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ∃ 𝑏 ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 140 |
|
r19.41v |
⊢ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 141 |
140
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) ( 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 142 |
133 139 141
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑏 = ( 𝑦𝐿 +s 𝐶 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 143 |
132 142
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ) |
| 144 |
33
|
rexab |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 145 |
|
rexcom4 |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 146 |
37
|
oveq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) = ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 147 |
|
oveq2 |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑥𝑅 ·s 𝑏 ) = ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) |
| 148 |
146 147
|
oveq12d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 149 |
148
|
eqeq2d |
⊢ ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) → ( 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
| 150 |
36 149
|
ceqsexv |
⊢ ( ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 151 |
150
|
rexbii |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ∃ 𝑏 ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 152 |
|
r19.41v |
⊢ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 153 |
152
|
exbii |
⊢ ( ∃ 𝑏 ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) ( 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ) |
| 154 |
145 151 153
|
3bitr3ri |
⊢ ( ∃ 𝑏 ( ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑏 = ( 𝐵 +s 𝑧𝐿 ) ∧ 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 155 |
144 154
|
bitri |
⊢ ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ↔ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) |
| 156 |
143 155
|
orbi12i |
⊢ ( ( ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ∨ ∃ 𝑏 ∈ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) ↔ ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ) |
| 157 |
131 156
|
bitr2i |
⊢ ( ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
| 158 |
157
|
rexbii |
⊢ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ( ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
| 159 |
130 158
|
bitr3i |
⊢ ( ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) ↔ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) ) |
| 160 |
159
|
abbii |
⊢ { 𝑎 ∣ ( ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) ∨ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) ) } = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
| 161 |
129 160
|
eqtri |
⊢ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) = { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } |
| 162 |
128 161
|
uneq12i |
⊢ ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ) = ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |
| 163 |
95 162
|
oveq12i |
⊢ ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ) ) = ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) |s ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑡 = ( 𝑦𝑅 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝑅 ) } ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝐿 ·s 𝑏 ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑏 ∈ ( { 𝑡 ∣ ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑡 = ( 𝑦𝐿 +s 𝐶 ) } ∪ { 𝑡 ∣ ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑡 = ( 𝐵 +s 𝑧𝐿 ) } ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s 𝑏 ) ) -s ( 𝑥𝑅 ·s 𝑏 ) ) } ) ) |
| 164 |
12 163
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 +s 𝐶 ) ) = ( ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ) |s ( ( { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑦𝑅 ∈ ( R ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) -s ( 𝑥𝐿 ·s ( 𝑦𝑅 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝐿 ∈ ( L ‘ 𝐴 ) ∃ 𝑧𝑅 ∈ ( R ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝐿 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) -s ( 𝑥𝐿 ·s ( 𝐵 +s 𝑧𝑅 ) ) ) } ) ∪ ( { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑦𝐿 ∈ ( L ‘ 𝐵 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) -s ( 𝑥𝑅 ·s ( 𝑦𝐿 +s 𝐶 ) ) ) } ∪ { 𝑎 ∣ ∃ 𝑥𝑅 ∈ ( R ‘ 𝐴 ) ∃ 𝑧𝐿 ∈ ( L ‘ 𝐶 ) 𝑎 = ( ( ( 𝑥𝑅 ·s ( 𝐵 +s 𝐶 ) ) +s ( 𝐴 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) -s ( 𝑥𝑅 ·s ( 𝐵 +s 𝑧𝐿 ) ) ) } ) ) ) ) |