| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addsdilem3.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | addsdilem3.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | addsdilem3.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | addsdilem3.4 | ⊢ ( 𝜑  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ( 𝑥𝑂  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝑥𝑂  ·s  𝐵 )  +s  ( 𝑥𝑂  ·s  𝐶 ) ) ) | 
						
							| 5 |  | addsdilem3.5 | ⊢ ( 𝜑  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ( 𝐴  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝑦𝑂 )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 6 |  | addsdilem3.6 | ⊢ ( 𝜑  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ( 𝑥𝑂  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  +s  ( 𝑥𝑂  ·s  𝐶 ) ) ) | 
						
							| 7 |  | addsdilem3.7 | ⊢ ( 𝜓  →  𝑋  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 8 |  | addsdilem3.8 | ⊢ ( 𝜓  →  𝑌  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑋  →  ( 𝑥𝑂  ·s  ( 𝐵  +s  𝐶 ) )  =  ( 𝑋  ·s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 10 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑋  →  ( 𝑥𝑂  ·s  𝐵 )  =  ( 𝑋  ·s  𝐵 ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑋  →  ( 𝑥𝑂  ·s  𝐶 )  =  ( 𝑋  ·s  𝐶 ) ) | 
						
							| 12 | 10 11 | oveq12d | ⊢ ( 𝑥𝑂  =  𝑋  →  ( ( 𝑥𝑂  ·s  𝐵 )  +s  ( 𝑥𝑂  ·s  𝐶 ) )  =  ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) ) ) | 
						
							| 13 | 9 12 | eqeq12d | ⊢ ( 𝑥𝑂  =  𝑋  →  ( ( 𝑥𝑂  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝑥𝑂  ·s  𝐵 )  +s  ( 𝑥𝑂  ·s  𝐶 ) )  ↔  ( 𝑋  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) ) ) ) | 
						
							| 14 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ( 𝑥𝑂  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝑥𝑂  ·s  𝐵 )  +s  ( 𝑥𝑂  ·s  𝐶 ) ) ) | 
						
							| 15 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑋  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ) | 
						
							| 16 | 13 14 15 | rspcdva | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  ·s  ( 𝐵  +s  𝐶 ) )  =  ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) ) ) | 
						
							| 17 |  | oveq1 | ⊢ ( 𝑦𝑂  =  𝑌  →  ( 𝑦𝑂  +s  𝐶 )  =  ( 𝑌  +s  𝐶 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑦𝑂  =  𝑌  →  ( 𝐴  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( 𝐴  ·s  ( 𝑌  +s  𝐶 ) ) ) | 
						
							| 19 |  | oveq2 | ⊢ ( 𝑦𝑂  =  𝑌  →  ( 𝐴  ·s  𝑦𝑂 )  =  ( 𝐴  ·s  𝑌 ) ) | 
						
							| 20 | 19 | oveq1d | ⊢ ( 𝑦𝑂  =  𝑌  →  ( ( 𝐴  ·s  𝑦𝑂 )  +s  ( 𝐴  ·s  𝐶 ) )  =  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 21 | 18 20 | eqeq12d | ⊢ ( 𝑦𝑂  =  𝑌  →  ( ( 𝐴  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝑦𝑂 )  +s  ( 𝐴  ·s  𝐶 ) )  ↔  ( 𝐴  ·s  ( 𝑌  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 22 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ( 𝐴  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝑦𝑂 )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 23 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑌  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ) | 
						
							| 24 | 21 22 23 | rspcdva | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐴  ·s  ( 𝑌  +s  𝐶 ) )  =  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 25 | 16 24 | oveq12d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑋  ·s  ( 𝐵  +s  𝐶 ) )  +s  ( 𝐴  ·s  ( 𝑌  +s  𝐶 ) ) )  =  ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 26 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑋  →  ( 𝑥𝑂  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( 𝑋  ·s  ( 𝑦𝑂  +s  𝐶 ) ) ) | 
						
							| 27 |  | oveq1 | ⊢ ( 𝑥𝑂  =  𝑋  →  ( 𝑥𝑂  ·s  𝑦𝑂 )  =  ( 𝑋  ·s  𝑦𝑂 ) ) | 
						
							| 28 | 27 11 | oveq12d | ⊢ ( 𝑥𝑂  =  𝑋  →  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  +s  ( 𝑥𝑂  ·s  𝐶 ) )  =  ( ( 𝑋  ·s  𝑦𝑂 )  +s  ( 𝑋  ·s  𝐶 ) ) ) | 
						
							| 29 | 26 28 | eqeq12d | ⊢ ( 𝑥𝑂  =  𝑋  →  ( ( 𝑥𝑂  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  +s  ( 𝑥𝑂  ·s  𝐶 ) )  ↔  ( 𝑋  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝑋  ·s  𝑦𝑂 )  +s  ( 𝑋  ·s  𝐶 ) ) ) ) | 
						
							| 30 | 17 | oveq2d | ⊢ ( 𝑦𝑂  =  𝑌  →  ( 𝑋  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( 𝑋  ·s  ( 𝑌  +s  𝐶 ) ) ) | 
						
							| 31 |  | oveq2 | ⊢ ( 𝑦𝑂  =  𝑌  →  ( 𝑋  ·s  𝑦𝑂 )  =  ( 𝑋  ·s  𝑌 ) ) | 
						
							| 32 | 31 | oveq1d | ⊢ ( 𝑦𝑂  =  𝑌  →  ( ( 𝑋  ·s  𝑦𝑂 )  +s  ( 𝑋  ·s  𝐶 ) )  =  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) | 
						
							| 33 | 30 32 | eqeq12d | ⊢ ( 𝑦𝑂  =  𝑌  →  ( ( 𝑋  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝑋  ·s  𝑦𝑂 )  +s  ( 𝑋  ·s  𝐶 ) )  ↔  ( 𝑋  ·s  ( 𝑌  +s  𝐶 ) )  =  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) ) | 
						
							| 34 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ∀ 𝑥𝑂  ∈  ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) ) ∀ 𝑦𝑂  ∈  ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) ) ( 𝑥𝑂  ·s  ( 𝑦𝑂  +s  𝐶 ) )  =  ( ( 𝑥𝑂  ·s  𝑦𝑂 )  +s  ( 𝑥𝑂  ·s  𝐶 ) ) ) | 
						
							| 35 | 29 33 34 15 23 | rspc2dv | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  ·s  ( 𝑌  +s  𝐶 ) )  =  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) | 
						
							| 36 | 25 35 | oveq12d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝑋  ·s  ( 𝐵  +s  𝐶 ) )  +s  ( 𝐴  ·s  ( 𝑌  +s  𝐶 ) ) )  -s  ( 𝑋  ·s  ( 𝑌  +s  𝐶 ) ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) ) | 
						
							| 37 |  | leftssno | ⊢ (  L  ‘ 𝐴 )  ⊆   No | 
						
							| 38 |  | rightssno | ⊢ (  R  ‘ 𝐴 )  ⊆   No | 
						
							| 39 | 37 38 | unssi | ⊢ ( (  L  ‘ 𝐴 )  ∪  (  R  ‘ 𝐴 ) )  ⊆   No | 
						
							| 40 | 39 7 | sselid | ⊢ ( 𝜓  →  𝑋  ∈   No  ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑋  ∈   No  ) | 
						
							| 42 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐵  ∈   No  ) | 
						
							| 43 | 41 42 | mulscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  ·s  𝐵 )  ∈   No  ) | 
						
							| 44 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐶  ∈   No  ) | 
						
							| 45 | 41 44 | mulscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  ·s  𝐶 )  ∈   No  ) | 
						
							| 46 |  | pncans | ⊢ ( ( ( 𝑋  ·s  𝐵 )  ∈   No   ∧  ( 𝑋  ·s  𝐶 )  ∈   No  )  →  ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝐶 ) )  =  ( 𝑋  ·s  𝐵 ) ) | 
						
							| 47 | 43 45 46 | syl2anc | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝐶 ) )  =  ( 𝑋  ·s  𝐵 ) ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  =  ( ( 𝑋  ·s  𝐵 )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 49 | 43 45 | addscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  ∈   No  ) | 
						
							| 50 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝐴  ∈   No  ) | 
						
							| 51 |  | leftssno | ⊢ (  L  ‘ 𝐵 )  ⊆   No | 
						
							| 52 |  | rightssno | ⊢ (  R  ‘ 𝐵 )  ⊆   No | 
						
							| 53 | 51 52 | unssi | ⊢ ( (  L  ‘ 𝐵 )  ∪  (  R  ‘ 𝐵 ) )  ⊆   No | 
						
							| 54 | 53 8 | sselid | ⊢ ( 𝜓  →  𝑌  ∈   No  ) | 
						
							| 55 | 54 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  𝑌  ∈   No  ) | 
						
							| 56 | 50 55 | mulscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐴  ·s  𝑌 )  ∈   No  ) | 
						
							| 57 | 1 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  ∈   No  ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝐴  ·s  𝐶 )  ∈   No  ) | 
						
							| 59 | 56 58 | addscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) )  ∈   No  ) | 
						
							| 60 | 49 59 45 | addsubsd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( 𝑋  ·s  𝐶 ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 61 | 43 56 58 | addsassd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) )  =  ( ( 𝑋  ·s  𝐵 )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) ) ) | 
						
							| 62 | 48 60 61 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( 𝑋  ·s  𝐶 ) )  =  ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 63 | 62 | oveq1d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝑌 ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝑌 ) ) ) | 
						
							| 64 | 49 59 | addscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  ∈   No  ) | 
						
							| 65 | 40 54 | mulscld | ⊢ ( 𝜓  →  ( 𝑋  ·s  𝑌 )  ∈   No  ) | 
						
							| 66 | 65 | adantl | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( 𝑋  ·s  𝑌 )  ∈   No  ) | 
						
							| 67 | 64 45 66 | subsubs4d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝑌 ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( ( 𝑋  ·s  𝐶 )  +s  ( 𝑋  ·s  𝑌 ) ) ) ) | 
						
							| 68 | 45 66 | addscomd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑋  ·s  𝐶 )  +s  ( 𝑋  ·s  𝑌 ) )  =  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) | 
						
							| 69 | 68 | oveq2d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( ( 𝑋  ·s  𝐶 )  +s  ( 𝑋  ·s  𝑌 ) ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) ) | 
						
							| 70 | 67 69 | eqtrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( 𝑋  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝑌 ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) ) ) | 
						
							| 71 | 43 56 | addscld | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  ∈   No  ) | 
						
							| 72 | 71 58 66 | addsubsd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) )  -s  ( 𝑋  ·s  𝑌 ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  -s  ( 𝑋  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 73 | 63 70 72 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝑋  ·s  𝐶 ) )  +s  ( ( 𝐴  ·s  𝑌 )  +s  ( 𝐴  ·s  𝐶 ) ) )  -s  ( ( 𝑋  ·s  𝑌 )  +s  ( 𝑋  ·s  𝐶 ) ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  -s  ( 𝑋  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) ) ) | 
						
							| 74 | 36 73 | eqtrd | ⊢ ( ( 𝜑  ∧  𝜓 )  →  ( ( ( 𝑋  ·s  ( 𝐵  +s  𝐶 ) )  +s  ( 𝐴  ·s  ( 𝑌  +s  𝐶 ) ) )  -s  ( 𝑋  ·s  ( 𝑌  +s  𝐶 ) ) )  =  ( ( ( ( 𝑋  ·s  𝐵 )  +s  ( 𝐴  ·s  𝑌 ) )  -s  ( 𝑋  ·s  𝑌 ) )  +s  ( 𝐴  ·s  𝐶 ) ) ) |