| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addsdilem3.1 |
|- ( ph -> A e. No ) |
| 2 |
|
addsdilem3.2 |
|- ( ph -> B e. No ) |
| 3 |
|
addsdilem3.3 |
|- ( ph -> C e. No ) |
| 4 |
|
addsdilem3.4 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) |
| 5 |
|
addsdilem3.5 |
|- ( ph -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) |
| 6 |
|
addsdilem3.6 |
|- ( ph -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) |
| 7 |
|
addsdilem3.7 |
|- ( ps -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 8 |
|
addsdilem3.8 |
|- ( ps -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
| 9 |
|
oveq1 |
|- ( xO = X -> ( xO x.s ( B +s C ) ) = ( X x.s ( B +s C ) ) ) |
| 10 |
|
oveq1 |
|- ( xO = X -> ( xO x.s B ) = ( X x.s B ) ) |
| 11 |
|
oveq1 |
|- ( xO = X -> ( xO x.s C ) = ( X x.s C ) ) |
| 12 |
10 11
|
oveq12d |
|- ( xO = X -> ( ( xO x.s B ) +s ( xO x.s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) |
| 13 |
9 12
|
eqeq12d |
|- ( xO = X -> ( ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) <-> ( X x.s ( B +s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) ) |
| 14 |
4
|
adantr |
|- ( ( ph /\ ps ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) ( xO x.s ( B +s C ) ) = ( ( xO x.s B ) +s ( xO x.s C ) ) ) |
| 15 |
7
|
adantl |
|- ( ( ph /\ ps ) -> X e. ( ( _Left ` A ) u. ( _Right ` A ) ) ) |
| 16 |
13 14 15
|
rspcdva |
|- ( ( ph /\ ps ) -> ( X x.s ( B +s C ) ) = ( ( X x.s B ) +s ( X x.s C ) ) ) |
| 17 |
|
oveq1 |
|- ( yO = Y -> ( yO +s C ) = ( Y +s C ) ) |
| 18 |
17
|
oveq2d |
|- ( yO = Y -> ( A x.s ( yO +s C ) ) = ( A x.s ( Y +s C ) ) ) |
| 19 |
|
oveq2 |
|- ( yO = Y -> ( A x.s yO ) = ( A x.s Y ) ) |
| 20 |
19
|
oveq1d |
|- ( yO = Y -> ( ( A x.s yO ) +s ( A x.s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) |
| 21 |
18 20
|
eqeq12d |
|- ( yO = Y -> ( ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) <-> ( A x.s ( Y +s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) ) |
| 22 |
5
|
adantr |
|- ( ( ph /\ ps ) -> A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( A x.s ( yO +s C ) ) = ( ( A x.s yO ) +s ( A x.s C ) ) ) |
| 23 |
8
|
adantl |
|- ( ( ph /\ ps ) -> Y e. ( ( _Left ` B ) u. ( _Right ` B ) ) ) |
| 24 |
21 22 23
|
rspcdva |
|- ( ( ph /\ ps ) -> ( A x.s ( Y +s C ) ) = ( ( A x.s Y ) +s ( A x.s C ) ) ) |
| 25 |
16 24
|
oveq12d |
|- ( ( ph /\ ps ) -> ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) = ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) |
| 26 |
|
oveq1 |
|- ( xO = X -> ( xO x.s ( yO +s C ) ) = ( X x.s ( yO +s C ) ) ) |
| 27 |
|
oveq1 |
|- ( xO = X -> ( xO x.s yO ) = ( X x.s yO ) ) |
| 28 |
27 11
|
oveq12d |
|- ( xO = X -> ( ( xO x.s yO ) +s ( xO x.s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) ) |
| 29 |
26 28
|
eqeq12d |
|- ( xO = X -> ( ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) <-> ( X x.s ( yO +s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) ) ) |
| 30 |
17
|
oveq2d |
|- ( yO = Y -> ( X x.s ( yO +s C ) ) = ( X x.s ( Y +s C ) ) ) |
| 31 |
|
oveq2 |
|- ( yO = Y -> ( X x.s yO ) = ( X x.s Y ) ) |
| 32 |
31
|
oveq1d |
|- ( yO = Y -> ( ( X x.s yO ) +s ( X x.s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) |
| 33 |
30 32
|
eqeq12d |
|- ( yO = Y -> ( ( X x.s ( yO +s C ) ) = ( ( X x.s yO ) +s ( X x.s C ) ) <-> ( X x.s ( Y +s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) ) |
| 34 |
6
|
adantr |
|- ( ( ph /\ ps ) -> A. xO e. ( ( _Left ` A ) u. ( _Right ` A ) ) A. yO e. ( ( _Left ` B ) u. ( _Right ` B ) ) ( xO x.s ( yO +s C ) ) = ( ( xO x.s yO ) +s ( xO x.s C ) ) ) |
| 35 |
29 33 34 15 23
|
rspc2dv |
|- ( ( ph /\ ps ) -> ( X x.s ( Y +s C ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) |
| 36 |
25 35
|
oveq12d |
|- ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) |
| 37 |
|
leftssno |
|- ( _Left ` A ) C_ No |
| 38 |
|
rightssno |
|- ( _Right ` A ) C_ No |
| 39 |
37 38
|
unssi |
|- ( ( _Left ` A ) u. ( _Right ` A ) ) C_ No |
| 40 |
39 7
|
sselid |
|- ( ps -> X e. No ) |
| 41 |
40
|
adantl |
|- ( ( ph /\ ps ) -> X e. No ) |
| 42 |
2
|
adantr |
|- ( ( ph /\ ps ) -> B e. No ) |
| 43 |
41 42
|
mulscld |
|- ( ( ph /\ ps ) -> ( X x.s B ) e. No ) |
| 44 |
3
|
adantr |
|- ( ( ph /\ ps ) -> C e. No ) |
| 45 |
41 44
|
mulscld |
|- ( ( ph /\ ps ) -> ( X x.s C ) e. No ) |
| 46 |
|
pncans |
|- ( ( ( X x.s B ) e. No /\ ( X x.s C ) e. No ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) = ( X x.s B ) ) |
| 47 |
43 45 46
|
syl2anc |
|- ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) = ( X x.s B ) ) |
| 48 |
47
|
oveq1d |
|- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) = ( ( X x.s B ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) |
| 49 |
43 45
|
addscld |
|- ( ( ph /\ ps ) -> ( ( X x.s B ) +s ( X x.s C ) ) e. No ) |
| 50 |
1
|
adantr |
|- ( ( ph /\ ps ) -> A e. No ) |
| 51 |
|
leftssno |
|- ( _Left ` B ) C_ No |
| 52 |
|
rightssno |
|- ( _Right ` B ) C_ No |
| 53 |
51 52
|
unssi |
|- ( ( _Left ` B ) u. ( _Right ` B ) ) C_ No |
| 54 |
53 8
|
sselid |
|- ( ps -> Y e. No ) |
| 55 |
54
|
adantl |
|- ( ( ph /\ ps ) -> Y e. No ) |
| 56 |
50 55
|
mulscld |
|- ( ( ph /\ ps ) -> ( A x.s Y ) e. No ) |
| 57 |
1 3
|
mulscld |
|- ( ph -> ( A x.s C ) e. No ) |
| 58 |
57
|
adantr |
|- ( ( ph /\ ps ) -> ( A x.s C ) e. No ) |
| 59 |
56 58
|
addscld |
|- ( ( ph /\ ps ) -> ( ( A x.s Y ) +s ( A x.s C ) ) e. No ) |
| 60 |
49 59 45
|
addsubsd |
|- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) -s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) |
| 61 |
43 56 58
|
addsassd |
|- ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) = ( ( X x.s B ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) ) |
| 62 |
48 60 61
|
3eqtr4d |
|- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) = ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) ) |
| 63 |
62
|
oveq1d |
|- ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) -s ( X x.s Y ) ) ) |
| 64 |
49 59
|
addscld |
|- ( ( ph /\ ps ) -> ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) e. No ) |
| 65 |
40 54
|
mulscld |
|- ( ps -> ( X x.s Y ) e. No ) |
| 66 |
65
|
adantl |
|- ( ( ph /\ ps ) -> ( X x.s Y ) e. No ) |
| 67 |
64 45 66
|
subsubs4d |
|- ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s C ) +s ( X x.s Y ) ) ) ) |
| 68 |
45 66
|
addscomd |
|- ( ( ph /\ ps ) -> ( ( X x.s C ) +s ( X x.s Y ) ) = ( ( X x.s Y ) +s ( X x.s C ) ) ) |
| 69 |
68
|
oveq2d |
|- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s C ) +s ( X x.s Y ) ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) |
| 70 |
67 69
|
eqtrd |
|- ( ( ph /\ ps ) -> ( ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( X x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) ) |
| 71 |
43 56
|
addscld |
|- ( ( ph /\ ps ) -> ( ( X x.s B ) +s ( A x.s Y ) ) e. No ) |
| 72 |
71 58 66
|
addsubsd |
|- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( A x.s Y ) ) +s ( A x.s C ) ) -s ( X x.s Y ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) |
| 73 |
63 70 72
|
3eqtr3d |
|- ( ( ph /\ ps ) -> ( ( ( ( X x.s B ) +s ( X x.s C ) ) +s ( ( A x.s Y ) +s ( A x.s C ) ) ) -s ( ( X x.s Y ) +s ( X x.s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) |
| 74 |
36 73
|
eqtrd |
|- ( ( ph /\ ps ) -> ( ( ( X x.s ( B +s C ) ) +s ( A x.s ( Y +s C ) ) ) -s ( X x.s ( Y +s C ) ) ) = ( ( ( ( X x.s B ) +s ( A x.s Y ) ) -s ( X x.s Y ) ) +s ( A x.s C ) ) ) |