| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ajval.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | ajval.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | ajval.3 | ⊢ 𝑃  =  ( ·𝑖OLD ‘ 𝑈 ) | 
						
							| 4 |  | ajval.4 | ⊢ 𝑄  =  ( ·𝑖OLD ‘ 𝑊 ) | 
						
							| 5 |  | ajval.5 | ⊢ 𝐴  =  ( 𝑈 adj 𝑊 ) | 
						
							| 6 |  | phnv | ⊢ ( 𝑈  ∈  CPreHilOLD  →  𝑈  ∈  NrmCVec ) | 
						
							| 7 | 1 2 3 4 5 | ajfval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec )  →  𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 8 | 6 7 | sylan | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝑊  ∈  NrmCVec )  →  𝐴  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ) | 
						
							| 9 | 8 | fveq1d | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝑊  ∈  NrmCVec )  →  ( 𝐴 ‘ 𝑇 )  =  ( { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) ) | 
						
							| 10 | 9 | 3adant3 | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝐴 ‘ 𝑇 )  =  ( { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 ) ) | 
						
							| 11 | 1 | fvexi | ⊢ 𝑋  ∈  V | 
						
							| 12 |  | fex | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑋  ∈  V )  →  𝑇  ∈  V ) | 
						
							| 13 | 11 12 | mpan2 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  𝑇  ∈  V ) | 
						
							| 14 |  | eqid | ⊢ { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) }  =  { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } | 
						
							| 15 |  | feq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 : 𝑋 ⟶ 𝑌  ↔  𝑇 : 𝑋 ⟶ 𝑌 ) ) | 
						
							| 16 |  | fveq1 | ⊢ ( 𝑡  =  𝑇  →  ( 𝑡 ‘ 𝑥 )  =  ( 𝑇 ‘ 𝑥 ) ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 ) ) | 
						
							| 18 | 17 | eqeq1d | ⊢ ( 𝑡  =  𝑇  →  ( ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) )  ↔  ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 19 | 18 | 2ralbidv | ⊢ ( 𝑡  =  𝑇  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) | 
						
							| 20 | 15 19 | 3anbi13d | ⊢ ( 𝑡  =  𝑇  →  ( ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) )  ↔  ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 21 | 14 20 | fvopab5 | ⊢ ( 𝑇  ∈  V  →  ( { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 )  =  ( ℩ 𝑠 ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 22 | 13 21 | syl | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 )  =  ( ℩ 𝑠 ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 23 |  | 3anass | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) )  ↔  ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  ( 𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 24 | 23 | baib | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) )  ↔  ( 𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 25 | 24 | iotabidv | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( ℩ 𝑠 ( 𝑇 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) )  =  ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 26 | 22 25 | eqtrd | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌  →  ( { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 )  =  ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 27 | 26 | 3ad2ant3 | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( { 〈 𝑡 ,  𝑠 〉  ∣  ( 𝑡 : 𝑋 ⟶ 𝑌  ∧  𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑡 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) } ‘ 𝑇 )  =  ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) | 
						
							| 28 | 10 27 | eqtrd | ⊢ ( ( 𝑈  ∈  CPreHilOLD  ∧  𝑊  ∈  NrmCVec  ∧  𝑇 : 𝑋 ⟶ 𝑌 )  →  ( 𝐴 ‘ 𝑇 )  =  ( ℩ 𝑠 ( 𝑠 : 𝑌 ⟶ 𝑋  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑌 ( ( 𝑇 ‘ 𝑥 ) 𝑄 𝑦 )  =  ( 𝑥 𝑃 ( 𝑠 ‘ 𝑦 ) ) ) ) ) |