Step |
Hyp |
Ref |
Expression |
1 |
|
bj-inftyexpidisj |
⊢ ¬ ( +∞ei ‘ 𝑦 ) ∈ ℂ |
2 |
1
|
nex |
⊢ ¬ ∃ 𝑦 ( +∞ei ‘ 𝑦 ) ∈ ℂ |
3 |
|
elin |
⊢ ( 𝑥 ∈ ( ℂ ∩ ℂ∞ ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ∞ ) ) |
4 |
|
df-bj-inftyexpi |
⊢ +∞ei = ( 𝑧 ∈ ( - π (,] π ) ↦ 〈 𝑧 , ℂ 〉 ) |
5 |
4
|
funmpt2 |
⊢ Fun +∞ei |
6 |
|
elrnrexdm |
⊢ ( Fun +∞ei → ( 𝑥 ∈ ran +∞ei → ∃ 𝑦 ∈ dom +∞ei 𝑥 = ( +∞ei ‘ 𝑦 ) ) ) |
7 |
5 6
|
ax-mp |
⊢ ( 𝑥 ∈ ran +∞ei → ∃ 𝑦 ∈ dom +∞ei 𝑥 = ( +∞ei ‘ 𝑦 ) ) |
8 |
|
rexex |
⊢ ( ∃ 𝑦 ∈ dom +∞ei 𝑥 = ( +∞ei ‘ 𝑦 ) → ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝑥 ∈ ran +∞ei → ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) |
10 |
|
df-bj-ccinfty |
⊢ ℂ∞ = ran +∞ei |
11 |
9 10
|
eleq2s |
⊢ ( 𝑥 ∈ ℂ∞ → ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) |
12 |
11
|
anim2i |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ∞ ) → ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) ) |
13 |
3 12
|
sylbi |
⊢ ( 𝑥 ∈ ( ℂ ∩ ℂ∞ ) → ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) ) |
14 |
|
ancom |
⊢ ( ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) ↔ ( ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ∧ 𝑥 ∈ ℂ ) ) |
15 |
|
exancom |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei ‘ 𝑦 ) ) ↔ ∃ 𝑦 ( 𝑥 = ( +∞ei ‘ 𝑦 ) ∧ 𝑥 ∈ ℂ ) ) |
16 |
|
19.41v |
⊢ ( ∃ 𝑦 ( 𝑥 = ( +∞ei ‘ 𝑦 ) ∧ 𝑥 ∈ ℂ ) ↔ ( ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ∧ 𝑥 ∈ ℂ ) ) |
17 |
15 16
|
bitri |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei ‘ 𝑦 ) ) ↔ ( ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ∧ 𝑥 ∈ ℂ ) ) |
18 |
14 17
|
sylbb2 |
⊢ ( ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei ‘ 𝑦 ) ) → ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei ‘ 𝑦 ) ) ) |
19 |
13 18
|
syl |
⊢ ( 𝑥 ∈ ( ℂ ∩ ℂ∞ ) → ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei ‘ 𝑦 ) ) ) |
20 |
|
eleq1 |
⊢ ( 𝑥 = ( +∞ei ‘ 𝑦 ) → ( 𝑥 ∈ ℂ ↔ ( +∞ei ‘ 𝑦 ) ∈ ℂ ) ) |
21 |
20
|
biimpac |
⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei ‘ 𝑦 ) ) → ( +∞ei ‘ 𝑦 ) ∈ ℂ ) |
22 |
21
|
eximi |
⊢ ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei ‘ 𝑦 ) ) → ∃ 𝑦 ( +∞ei ‘ 𝑦 ) ∈ ℂ ) |
23 |
19 22
|
syl |
⊢ ( 𝑥 ∈ ( ℂ ∩ ℂ∞ ) → ∃ 𝑦 ( +∞ei ‘ 𝑦 ) ∈ ℂ ) |
24 |
2 23
|
mto |
⊢ ¬ 𝑥 ∈ ( ℂ ∩ ℂ∞ ) |
25 |
24
|
nel0 |
⊢ ( ℂ ∩ ℂ∞ ) = ∅ |