Metamath Proof Explorer


Theorem bj-ccinftydisj

Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-ccinftydisj ( ℂ ∩ ℂ ) = ∅

Proof

Step Hyp Ref Expression
1 bj-inftyexpidisj ¬ ( +∞ei𝑦 ) ∈ ℂ
2 1 nex ¬ ∃ 𝑦 ( +∞ei𝑦 ) ∈ ℂ
3 elin ( 𝑥 ∈ ( ℂ ∩ ℂ ) ↔ ( 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ ) )
4 df-bj-inftyexpi +∞ei = ( 𝑧 ∈ ( - π (,] π ) ↦ ⟨ 𝑧 , ℂ ⟩ )
5 4 funmpt2 Fun +∞ei
6 elrnrexdm ( Fun +∞ei → ( 𝑥 ∈ ran +∞ei → ∃ 𝑦 ∈ dom +∞ei 𝑥 = ( +∞ei𝑦 ) ) )
7 5 6 ax-mp ( 𝑥 ∈ ran +∞ei → ∃ 𝑦 ∈ dom +∞ei 𝑥 = ( +∞ei𝑦 ) )
8 rexex ( ∃ 𝑦 ∈ dom +∞ei 𝑥 = ( +∞ei𝑦 ) → ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) )
9 7 8 syl ( 𝑥 ∈ ran +∞ei → ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) )
10 df-bj-ccinfty = ran +∞ei
11 9 10 eleq2s ( 𝑥 ∈ ℂ → ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) )
12 11 anim2i ( ( 𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ) )
13 3 12 sylbi ( 𝑥 ∈ ( ℂ ∩ ℂ ) → ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ) )
14 ancom ( ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ) ↔ ( ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ∧ 𝑥 ∈ ℂ ) )
15 exancom ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei𝑦 ) ) ↔ ∃ 𝑦 ( 𝑥 = ( +∞ei𝑦 ) ∧ 𝑥 ∈ ℂ ) )
16 19.41v ( ∃ 𝑦 ( 𝑥 = ( +∞ei𝑦 ) ∧ 𝑥 ∈ ℂ ) ↔ ( ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ∧ 𝑥 ∈ ℂ ) )
17 15 16 bitri ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei𝑦 ) ) ↔ ( ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ∧ 𝑥 ∈ ℂ ) )
18 14 17 sylbb2 ( ( 𝑥 ∈ ℂ ∧ ∃ 𝑦 𝑥 = ( +∞ei𝑦 ) ) → ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei𝑦 ) ) )
19 13 18 syl ( 𝑥 ∈ ( ℂ ∩ ℂ ) → ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei𝑦 ) ) )
20 eleq1 ( 𝑥 = ( +∞ei𝑦 ) → ( 𝑥 ∈ ℂ ↔ ( +∞ei𝑦 ) ∈ ℂ ) )
21 20 biimpac ( ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei𝑦 ) ) → ( +∞ei𝑦 ) ∈ ℂ )
22 21 eximi ( ∃ 𝑦 ( 𝑥 ∈ ℂ ∧ 𝑥 = ( +∞ei𝑦 ) ) → ∃ 𝑦 ( +∞ei𝑦 ) ∈ ℂ )
23 19 22 syl ( 𝑥 ∈ ( ℂ ∩ ℂ ) → ∃ 𝑦 ( +∞ei𝑦 ) ∈ ℂ )
24 2 23 mto ¬ 𝑥 ∈ ( ℂ ∩ ℂ )
25 24 nel0 ( ℂ ∩ ℂ ) = ∅