Step |
Hyp |
Ref |
Expression |
1 |
|
bj-inftyexpidisj |
|- -. ( inftyexpi ` y ) e. CC |
2 |
1
|
nex |
|- -. E. y ( inftyexpi ` y ) e. CC |
3 |
|
elin |
|- ( x e. ( CC i^i CCinfty ) <-> ( x e. CC /\ x e. CCinfty ) ) |
4 |
|
df-bj-inftyexpi |
|- inftyexpi = ( z e. ( -u _pi (,] _pi ) |-> <. z , CC >. ) |
5 |
4
|
funmpt2 |
|- Fun inftyexpi |
6 |
|
elrnrexdm |
|- ( Fun inftyexpi -> ( x e. ran inftyexpi -> E. y e. dom inftyexpi x = ( inftyexpi ` y ) ) ) |
7 |
5 6
|
ax-mp |
|- ( x e. ran inftyexpi -> E. y e. dom inftyexpi x = ( inftyexpi ` y ) ) |
8 |
|
rexex |
|- ( E. y e. dom inftyexpi x = ( inftyexpi ` y ) -> E. y x = ( inftyexpi ` y ) ) |
9 |
7 8
|
syl |
|- ( x e. ran inftyexpi -> E. y x = ( inftyexpi ` y ) ) |
10 |
|
df-bj-ccinfty |
|- CCinfty = ran inftyexpi |
11 |
9 10
|
eleq2s |
|- ( x e. CCinfty -> E. y x = ( inftyexpi ` y ) ) |
12 |
11
|
anim2i |
|- ( ( x e. CC /\ x e. CCinfty ) -> ( x e. CC /\ E. y x = ( inftyexpi ` y ) ) ) |
13 |
3 12
|
sylbi |
|- ( x e. ( CC i^i CCinfty ) -> ( x e. CC /\ E. y x = ( inftyexpi ` y ) ) ) |
14 |
|
ancom |
|- ( ( x e. CC /\ E. y x = ( inftyexpi ` y ) ) <-> ( E. y x = ( inftyexpi ` y ) /\ x e. CC ) ) |
15 |
|
exancom |
|- ( E. y ( x e. CC /\ x = ( inftyexpi ` y ) ) <-> E. y ( x = ( inftyexpi ` y ) /\ x e. CC ) ) |
16 |
|
19.41v |
|- ( E. y ( x = ( inftyexpi ` y ) /\ x e. CC ) <-> ( E. y x = ( inftyexpi ` y ) /\ x e. CC ) ) |
17 |
15 16
|
bitri |
|- ( E. y ( x e. CC /\ x = ( inftyexpi ` y ) ) <-> ( E. y x = ( inftyexpi ` y ) /\ x e. CC ) ) |
18 |
14 17
|
sylbb2 |
|- ( ( x e. CC /\ E. y x = ( inftyexpi ` y ) ) -> E. y ( x e. CC /\ x = ( inftyexpi ` y ) ) ) |
19 |
13 18
|
syl |
|- ( x e. ( CC i^i CCinfty ) -> E. y ( x e. CC /\ x = ( inftyexpi ` y ) ) ) |
20 |
|
eleq1 |
|- ( x = ( inftyexpi ` y ) -> ( x e. CC <-> ( inftyexpi ` y ) e. CC ) ) |
21 |
20
|
biimpac |
|- ( ( x e. CC /\ x = ( inftyexpi ` y ) ) -> ( inftyexpi ` y ) e. CC ) |
22 |
21
|
eximi |
|- ( E. y ( x e. CC /\ x = ( inftyexpi ` y ) ) -> E. y ( inftyexpi ` y ) e. CC ) |
23 |
19 22
|
syl |
|- ( x e. ( CC i^i CCinfty ) -> E. y ( inftyexpi ` y ) e. CC ) |
24 |
2 23
|
mto |
|- -. x e. ( CC i^i CCinfty ) |
25 |
24
|
nel0 |
|- ( CC i^i CCinfty ) = (/) |