Metamath Proof Explorer


Theorem bj-ccinftydisj

Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion bj-ccinftydisj =

Proof

Step Hyp Ref Expression
1 bj-inftyexpidisj ¬ inftyexpi y
2 1 nex ¬ y inftyexpi y
3 elin x x x
4 df-bj-inftyexpi inftyexpi = z π π z
5 4 funmpt2 Fun inftyexpi
6 elrnrexdm Fun inftyexpi x ran inftyexpi y dom inftyexpi x = inftyexpi y
7 5 6 ax-mp x ran inftyexpi y dom inftyexpi x = inftyexpi y
8 rexex y dom inftyexpi x = inftyexpi y y x = inftyexpi y
9 7 8 syl x ran inftyexpi y x = inftyexpi y
10 df-bj-ccinfty = ran inftyexpi
11 9 10 eleq2s x y x = inftyexpi y
12 11 anim2i x x x y x = inftyexpi y
13 3 12 sylbi x x y x = inftyexpi y
14 ancom x y x = inftyexpi y y x = inftyexpi y x
15 exancom y x x = inftyexpi y y x = inftyexpi y x
16 19.41v y x = inftyexpi y x y x = inftyexpi y x
17 15 16 bitri y x x = inftyexpi y y x = inftyexpi y x
18 14 17 sylbb2 x y x = inftyexpi y y x x = inftyexpi y
19 13 18 syl x y x x = inftyexpi y
20 eleq1 x = inftyexpi y x inftyexpi y
21 20 biimpac x x = inftyexpi y inftyexpi y
22 21 eximi y x x = inftyexpi y y inftyexpi y
23 19 22 syl x y inftyexpi y
24 2 23 mto ¬ x
25 24 nel0 =