| Step | Hyp | Ref | Expression | 
						
							| 1 |  | blometi.1 | ⊢ 𝑋  =  ( BaseSet ‘ 𝑈 ) | 
						
							| 2 |  | blometi.2 | ⊢ 𝑌  =  ( BaseSet ‘ 𝑊 ) | 
						
							| 3 |  | blometi.8 | ⊢ 𝐶  =  ( IndMet ‘ 𝑈 ) | 
						
							| 4 |  | blometi.d | ⊢ 𝐷  =  ( IndMet ‘ 𝑊 ) | 
						
							| 5 |  | blometi.6 | ⊢ 𝑁  =  ( 𝑈  normOpOLD  𝑊 ) | 
						
							| 6 |  | blometi.7 | ⊢ 𝐵  =  ( 𝑈  BLnOp  𝑊 ) | 
						
							| 7 |  | blometi.u | ⊢ 𝑈  ∈  NrmCVec | 
						
							| 8 |  | blometi.w | ⊢ 𝑊  ∈  NrmCVec | 
						
							| 9 |  | eqid | ⊢ (  −𝑣  ‘ 𝑈 )  =  (  −𝑣  ‘ 𝑈 ) | 
						
							| 10 | 1 9 | nvmcl | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 )  ∈  𝑋 ) | 
						
							| 11 | 7 10 | mp3an1 | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 )  ∈  𝑋 ) | 
						
							| 12 |  | eqid | ⊢ ( normCV ‘ 𝑈 )  =  ( normCV ‘ 𝑈 ) | 
						
							| 13 |  | eqid | ⊢ ( normCV ‘ 𝑊 )  =  ( normCV ‘ 𝑊 ) | 
						
							| 14 | 1 12 13 5 6 7 8 | nmblolbi | ⊢ ( ( 𝑇  ∈  𝐵  ∧  ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 )  ∈  𝑋 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) )  ≤  ( ( 𝑁 ‘ 𝑇 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) ) | 
						
							| 15 | 11 14 | sylan2 | ⊢ ( ( 𝑇  ∈  𝐵  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 ) )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) )  ≤  ( ( 𝑁 ‘ 𝑇 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) ) | 
						
							| 16 | 15 | 3impb | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) )  ≤  ( ( 𝑁 ‘ 𝑇 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) ) | 
						
							| 17 | 1 2 6 | blof | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐵 )  →  𝑇 : 𝑋 ⟶ 𝑌 ) | 
						
							| 18 | 7 8 17 | mp3an12 | ⊢ ( 𝑇  ∈  𝐵  →  𝑇 : 𝑋 ⟶ 𝑌 ) | 
						
							| 19 | 18 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋 )  →  ( 𝑇 ‘ 𝑃 )  ∈  𝑌 ) | 
						
							| 20 | 19 | 3adant3 | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑇 ‘ 𝑃 )  ∈  𝑌 ) | 
						
							| 21 | 18 | ffvelcdmda | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑄  ∈  𝑋 )  →  ( 𝑇 ‘ 𝑄 )  ∈  𝑌 ) | 
						
							| 22 | 21 | 3adant2 | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑇 ‘ 𝑄 )  ∈  𝑌 ) | 
						
							| 23 |  | eqid | ⊢ (  −𝑣  ‘ 𝑊 )  =  (  −𝑣  ‘ 𝑊 ) | 
						
							| 24 | 2 23 13 4 | imsdval | ⊢ ( ( 𝑊  ∈  NrmCVec  ∧  ( 𝑇 ‘ 𝑃 )  ∈  𝑌  ∧  ( 𝑇 ‘ 𝑄 )  ∈  𝑌 )  →  ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) | 
						
							| 25 | 8 24 | mp3an1 | ⊢ ( ( ( 𝑇 ‘ 𝑃 )  ∈  𝑌  ∧  ( 𝑇 ‘ 𝑄 )  ∈  𝑌 )  →  ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) | 
						
							| 26 | 20 22 25 | syl2anc | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) | 
						
							| 27 |  | eqid | ⊢ ( 𝑈  LnOp  𝑊 )  =  ( 𝑈  LnOp  𝑊 ) | 
						
							| 28 | 27 6 | bloln | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  𝐵 )  →  𝑇  ∈  ( 𝑈  LnOp  𝑊 ) ) | 
						
							| 29 | 7 8 28 | mp3an12 | ⊢ ( 𝑇  ∈  𝐵  →  𝑇  ∈  ( 𝑈  LnOp  𝑊 ) ) | 
						
							| 30 | 1 9 23 27 | lnosub | ⊢ ( ( ( 𝑈  ∈  NrmCVec  ∧  𝑊  ∈  NrmCVec  ∧  𝑇  ∈  ( 𝑈  LnOp  𝑊 ) )  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 ) )  →  ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) )  =  ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) | 
						
							| 31 | 7 30 | mp3anl1 | ⊢ ( ( ( 𝑊  ∈  NrmCVec  ∧  𝑇  ∈  ( 𝑈  LnOp  𝑊 ) )  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 ) )  →  ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) )  =  ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) | 
						
							| 32 | 8 31 | mpanl1 | ⊢ ( ( 𝑇  ∈  ( 𝑈  LnOp  𝑊 )  ∧  ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 ) )  →  ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) )  =  ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) | 
						
							| 33 | 32 | 3impb | ⊢ ( ( 𝑇  ∈  ( 𝑈  LnOp  𝑊 )  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) )  =  ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) | 
						
							| 34 | 29 33 | syl3an1 | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) )  =  ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) | 
						
							| 35 | 34 | fveq2d | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( ( 𝑇 ‘ 𝑃 ) (  −𝑣  ‘ 𝑊 ) ( 𝑇 ‘ 𝑄 ) ) ) ) | 
						
							| 36 | 26 35 | eqtr4d | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) )  =  ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) ) | 
						
							| 37 | 1 9 12 3 | imsdval | ⊢ ( ( 𝑈  ∈  NrmCVec  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑃 𝐶 𝑄 )  =  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) | 
						
							| 38 | 7 37 | mp3an1 | ⊢ ( ( 𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑃 𝐶 𝑄 )  =  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) | 
						
							| 39 | 38 | 3adant1 | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( 𝑃 𝐶 𝑄 )  =  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( ( 𝑁 ‘ 𝑇 )  ·  ( 𝑃 𝐶 𝑄 ) )  =  ( ( 𝑁 ‘ 𝑇 )  ·  ( ( normCV ‘ 𝑈 ) ‘ ( 𝑃 (  −𝑣  ‘ 𝑈 ) 𝑄 ) ) ) ) | 
						
							| 41 | 16 36 40 | 3brtr4d | ⊢ ( ( 𝑇  ∈  𝐵  ∧  𝑃  ∈  𝑋  ∧  𝑄  ∈  𝑋 )  →  ( ( 𝑇 ‘ 𝑃 ) 𝐷 ( 𝑇 ‘ 𝑄 ) )  ≤  ( ( 𝑁 ‘ 𝑇 )  ·  ( 𝑃 𝐶 𝑄 ) ) ) |