Metamath Proof Explorer


Theorem bnj580

Description: Technical lemma for bnj579 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj580.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj580.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj580.3 ( 𝜒 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
bnj580.4 ( 𝜑′[ 𝑔 / 𝑓 ] 𝜑 )
bnj580.5 ( 𝜓′[ 𝑔 / 𝑓 ] 𝜓 )
bnj580.6 ( 𝜒′[ 𝑔 / 𝑓 ] 𝜒 )
bnj580.7 𝐷 = ( ω ∖ { ∅ } )
bnj580.8 ( 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
bnj580.9 ( 𝜏 ↔ ∀ 𝑘𝑛 ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) )
Assertion bnj580 ( 𝑛𝐷 → ∃* 𝑓 𝜒 )

Proof

Step Hyp Ref Expression
1 bnj580.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj580.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj580.3 ( 𝜒 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj580.4 ( 𝜑′[ 𝑔 / 𝑓 ] 𝜑 )
5 bnj580.5 ( 𝜓′[ 𝑔 / 𝑓 ] 𝜓 )
6 bnj580.6 ( 𝜒′[ 𝑔 / 𝑓 ] 𝜒 )
7 bnj580.7 𝐷 = ( ω ∖ { ∅ } )
8 bnj580.8 ( 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
9 bnj580.9 ( 𝜏 ↔ ∀ 𝑘𝑛 ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) )
10 3 simp1bi ( 𝜒𝑓 Fn 𝑛 )
11 3 4 5 6 bnj581 ( 𝜒′ ↔ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) )
12 11 simp1bi ( 𝜒′𝑔 Fn 𝑛 )
13 10 12 bnj240 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓 Fn 𝑛𝑔 Fn 𝑛 ) )
14 4 1 bnj154 ( 𝜑′ ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
15 vex 𝑔 ∈ V
16 2 5 15 bnj540 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
17 8 bnj591 ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) ) )
18 1 2 3 7 14 16 11 8 17 9 bnj594 ( ( 𝑗𝑛𝜏 ) → 𝜃 )
19 18 ex ( 𝑗𝑛 → ( 𝜏𝜃 ) )
20 19 rgen 𝑗𝑛 ( 𝜏𝜃 )
21 vex 𝑛 ∈ V
22 21 9 bnj110 ( ( E Fr 𝑛 ∧ ∀ 𝑗𝑛 ( 𝜏𝜃 ) ) → ∀ 𝑗𝑛 𝜃 )
23 20 22 mpan2 ( E Fr 𝑛 → ∀ 𝑗𝑛 𝜃 )
24 8 ralbii ( ∀ 𝑗𝑛 𝜃 ↔ ∀ 𝑗𝑛 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
25 23 24 sylib ( E Fr 𝑛 → ∀ 𝑗𝑛 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
26 25 r19.21be 𝑗𝑛 ( E Fr 𝑛 → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
27 7 bnj923 ( 𝑛𝐷𝑛 ∈ ω )
28 nnord ( 𝑛 ∈ ω → Ord 𝑛 )
29 ordfr ( Ord 𝑛 → E Fr 𝑛 )
30 27 28 29 3syl ( 𝑛𝐷 → E Fr 𝑛 )
31 30 3ad2ant1 ( ( 𝑛𝐷𝜒𝜒′ ) → E Fr 𝑛 )
32 31 pm4.71ri ( ( 𝑛𝐷𝜒𝜒′ ) ↔ ( E Fr 𝑛 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) )
33 32 imbi1i ( ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ↔ ( ( E Fr 𝑛 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
34 impexp ( ( ( E Fr 𝑛 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ↔ ( E Fr 𝑛 → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ) )
35 33 34 bitri ( ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ↔ ( E Fr 𝑛 → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ) )
36 35 ralbii ( ∀ 𝑗𝑛 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ↔ ∀ 𝑗𝑛 ( E Fr 𝑛 → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ) )
37 26 36 mpbir 𝑗𝑛 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) )
38 r19.21v ( ∀ 𝑗𝑛 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ∀ 𝑗𝑛 ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
39 37 38 mpbi ( ( 𝑛𝐷𝜒𝜒′ ) → ∀ 𝑗𝑛 ( 𝑓𝑗 ) = ( 𝑔𝑗 ) )
40 eqfnfv ( ( 𝑓 Fn 𝑛𝑔 Fn 𝑛 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑗𝑛 ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
41 40 biimprd ( ( 𝑓 Fn 𝑛𝑔 Fn 𝑛 ) → ( ∀ 𝑗𝑛 ( 𝑓𝑗 ) = ( 𝑔𝑗 ) → 𝑓 = 𝑔 ) )
42 13 39 41 sylc ( ( 𝑛𝐷𝜒𝜒′ ) → 𝑓 = 𝑔 )
43 42 3expib ( 𝑛𝐷 → ( ( 𝜒𝜒′ ) → 𝑓 = 𝑔 ) )
44 43 alrimivv ( 𝑛𝐷 → ∀ 𝑓𝑔 ( ( 𝜒𝜒′ ) → 𝑓 = 𝑔 ) )
45 sbsbc ( [ 𝑔 / 𝑓 ] 𝜒[ 𝑔 / 𝑓 ] 𝜒 )
46 45 anbi2i ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ↔ ( 𝜒[ 𝑔 / 𝑓 ] 𝜒 ) )
47 46 imbi1i ( ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ↔ ( ( 𝜒[ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) )
48 47 2albii ( ∀ 𝑓𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ↔ ∀ 𝑓𝑔 ( ( 𝜒[ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) )
49 nfv 𝑔 𝜒
50 49 mo3 ( ∃* 𝑓 𝜒 ↔ ∀ 𝑓𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) )
51 6 anbi2i ( ( 𝜒𝜒′ ) ↔ ( 𝜒[ 𝑔 / 𝑓 ] 𝜒 ) )
52 51 imbi1i ( ( ( 𝜒𝜒′ ) → 𝑓 = 𝑔 ) ↔ ( ( 𝜒[ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) )
53 52 2albii ( ∀ 𝑓𝑔 ( ( 𝜒𝜒′ ) → 𝑓 = 𝑔 ) ↔ ∀ 𝑓𝑔 ( ( 𝜒[ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) )
54 48 50 53 3bitr4i ( ∃* 𝑓 𝜒 ↔ ∀ 𝑓𝑔 ( ( 𝜒𝜒′ ) → 𝑓 = 𝑔 ) )
55 44 54 sylibr ( 𝑛𝐷 → ∃* 𝑓 𝜒 )