| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj580.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj580.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj580.3 |
⊢ ( 𝜒 ↔ ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 4 |
|
bnj580.4 |
⊢ ( 𝜑′ ↔ [ 𝑔 / 𝑓 ] 𝜑 ) |
| 5 |
|
bnj580.5 |
⊢ ( 𝜓′ ↔ [ 𝑔 / 𝑓 ] 𝜓 ) |
| 6 |
|
bnj580.6 |
⊢ ( 𝜒′ ↔ [ 𝑔 / 𝑓 ] 𝜒 ) |
| 7 |
|
bnj580.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 8 |
|
bnj580.8 |
⊢ ( 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 9 |
|
bnj580.9 |
⊢ ( 𝜏 ↔ ∀ 𝑘 ∈ 𝑛 ( 𝑘 E 𝑗 → [ 𝑘 / 𝑗 ] 𝜃 ) ) |
| 10 |
3
|
simp1bi |
⊢ ( 𝜒 → 𝑓 Fn 𝑛 ) |
| 11 |
3 4 5 6
|
bnj581 |
⊢ ( 𝜒′ ↔ ( 𝑔 Fn 𝑛 ∧ 𝜑′ ∧ 𝜓′ ) ) |
| 12 |
11
|
simp1bi |
⊢ ( 𝜒′ → 𝑔 Fn 𝑛 ) |
| 13 |
10 12
|
bnj240 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛 ) ) |
| 14 |
4 1
|
bnj154 |
⊢ ( 𝜑′ ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 15 |
|
vex |
⊢ 𝑔 ∈ V |
| 16 |
2 5 15
|
bnj540 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑔 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑔 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 17 |
8
|
bnj591 |
⊢ ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑘 ) ) ) |
| 18 |
1 2 3 7 14 16 11 8 17 9
|
bnj594 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝜏 ) → 𝜃 ) |
| 19 |
18
|
ex |
⊢ ( 𝑗 ∈ 𝑛 → ( 𝜏 → 𝜃 ) ) |
| 20 |
19
|
rgen |
⊢ ∀ 𝑗 ∈ 𝑛 ( 𝜏 → 𝜃 ) |
| 21 |
|
vex |
⊢ 𝑛 ∈ V |
| 22 |
21 9
|
bnj110 |
⊢ ( ( E Fr 𝑛 ∧ ∀ 𝑗 ∈ 𝑛 ( 𝜏 → 𝜃 ) ) → ∀ 𝑗 ∈ 𝑛 𝜃 ) |
| 23 |
20 22
|
mpan2 |
⊢ ( E Fr 𝑛 → ∀ 𝑗 ∈ 𝑛 𝜃 ) |
| 24 |
8
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝑛 𝜃 ↔ ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 25 |
23 24
|
sylib |
⊢ ( E Fr 𝑛 → ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 26 |
25
|
r19.21be |
⊢ ∀ 𝑗 ∈ 𝑛 ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 27 |
7
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
| 28 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
| 29 |
|
ordfr |
⊢ ( Ord 𝑛 → E Fr 𝑛 ) |
| 30 |
27 28 29
|
3syl |
⊢ ( 𝑛 ∈ 𝐷 → E Fr 𝑛 ) |
| 31 |
30
|
3ad2ant1 |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → E Fr 𝑛 ) |
| 32 |
31
|
pm4.71ri |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ↔ ( E Fr 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) ) |
| 33 |
32
|
imbi1i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( E Fr 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 34 |
|
impexp |
⊢ ( ( ( E Fr 𝑛 ∧ ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 35 |
33 34
|
bitri |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 36 |
35
|
ralbii |
⊢ ( ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ∀ 𝑗 ∈ 𝑛 ( E Fr 𝑛 → ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) ) |
| 37 |
26 36
|
mpbir |
⊢ ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
| 38 |
|
r19.21v |
⊢ ( ∀ 𝑗 ∈ 𝑛 ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 39 |
37 38
|
mpbi |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) |
| 40 |
|
eqfnfv |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛 ) → ( 𝑓 = 𝑔 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) ) ) |
| 41 |
40
|
biimprd |
⊢ ( ( 𝑓 Fn 𝑛 ∧ 𝑔 Fn 𝑛 ) → ( ∀ 𝑗 ∈ 𝑛 ( 𝑓 ‘ 𝑗 ) = ( 𝑔 ‘ 𝑗 ) → 𝑓 = 𝑔 ) ) |
| 42 |
13 39 41
|
sylc |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) |
| 43 |
42
|
3expib |
⊢ ( 𝑛 ∈ 𝐷 → ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ) |
| 44 |
43
|
alrimivv |
⊢ ( 𝑛 ∈ 𝐷 → ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ) |
| 45 |
|
sbsbc |
⊢ ( [ 𝑔 / 𝑓 ] 𝜒 ↔ [ 𝑔 / 𝑓 ] 𝜒 ) |
| 46 |
45
|
anbi2i |
⊢ ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ↔ ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ) |
| 47 |
46
|
imbi1i |
⊢ ( ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ↔ ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
| 48 |
47
|
2albii |
⊢ ( ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
| 49 |
|
nfv |
⊢ Ⅎ 𝑔 𝜒 |
| 50 |
49
|
mo3 |
⊢ ( ∃* 𝑓 𝜒 ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
| 51 |
6
|
anbi2i |
⊢ ( ( 𝜒 ∧ 𝜒′ ) ↔ ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) ) |
| 52 |
51
|
imbi1i |
⊢ ( ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ↔ ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
| 53 |
52
|
2albii |
⊢ ( ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ [ 𝑔 / 𝑓 ] 𝜒 ) → 𝑓 = 𝑔 ) ) |
| 54 |
48 50 53
|
3bitr4i |
⊢ ( ∃* 𝑓 𝜒 ↔ ∀ 𝑓 ∀ 𝑔 ( ( 𝜒 ∧ 𝜒′ ) → 𝑓 = 𝑔 ) ) |
| 55 |
44 54
|
sylibr |
⊢ ( 𝑛 ∈ 𝐷 → ∃* 𝑓 𝜒 ) |