Metamath Proof Explorer


Theorem bnj594

Description: Technical lemma for bnj852 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj594.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj594.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj594.3 ( 𝜒 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
bnj594.7 𝐷 = ( ω ∖ { ∅ } )
bnj594.9 ( 𝜑′ ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
bnj594.10 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj594.11 ( 𝜒′ ↔ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) )
bnj594.15 ( 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
bnj594.16 ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) ) )
bnj594.17 ( 𝜏 ↔ ∀ 𝑘𝑛 ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) )
Assertion bnj594 ( ( 𝑗𝑛𝜏 ) → 𝜃 )

Proof

Step Hyp Ref Expression
1 bnj594.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
2 bnj594.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj594.3 ( 𝜒 ↔ ( 𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj594.7 𝐷 = ( ω ∖ { ∅ } )
5 bnj594.9 ( 𝜑′ ↔ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
6 bnj594.10 ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑔 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑔𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
7 bnj594.11 ( 𝜒′ ↔ ( 𝑔 Fn 𝑛𝜑′𝜓′ ) )
8 bnj594.15 ( 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
9 bnj594.16 ( [ 𝑘 / 𝑗 ] 𝜃 ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) ) )
10 bnj594.17 ( 𝜏 ↔ ∀ 𝑘𝑛 ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) )
11 3 simp2bi ( 𝜒𝜑 )
12 11 1 sylib ( 𝜒 → ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
13 7 simp2bi ( 𝜒′𝜑′ )
14 13 5 sylib ( 𝜒′ → ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) )
15 eqtr3 ( ( ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ∧ ( 𝑔 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) )
16 12 14 15 syl2an ( ( 𝜒𝜒′ ) → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) )
17 16 3adant1 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) )
18 fveq2 ( 𝑗 = ∅ → ( 𝑓𝑗 ) = ( 𝑓 ‘ ∅ ) )
19 fveq2 ( 𝑗 = ∅ → ( 𝑔𝑗 ) = ( 𝑔 ‘ ∅ ) )
20 18 19 eqeq12d ( 𝑗 = ∅ → ( ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ↔ ( 𝑓 ‘ ∅ ) = ( 𝑔 ‘ ∅ ) ) )
21 17 20 syl5ibr ( 𝑗 = ∅ → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
22 21 8 sylibr ( 𝑗 = ∅ → 𝜃 )
23 22 a1d ( 𝑗 = ∅ → ( ( 𝑗𝑛𝜏 ) → 𝜃 ) )
24 bnj253 ( ( 𝑛𝐷𝑛𝐷𝜒𝜒′ ) ↔ ( ( 𝑛𝐷𝑛𝐷 ) ∧ 𝜒𝜒′ ) )
25 bnj252 ( ( 𝑛𝐷𝑛𝐷𝜒𝜒′ ) ↔ ( 𝑛𝐷 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) )
26 anidm ( ( 𝑛𝐷𝑛𝐷 ) ↔ 𝑛𝐷 )
27 26 3anbi1i ( ( ( 𝑛𝐷𝑛𝐷 ) ∧ 𝜒𝜒′ ) ↔ ( 𝑛𝐷𝜒𝜒′ ) )
28 24 25 27 3bitr3i ( ( 𝑛𝐷 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) ↔ ( 𝑛𝐷𝜒𝜒′ ) )
29 df-bnj17 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) ↔ ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷 ) ∧ 𝜏 ) )
30 10 bnj1095 ( 𝜏 → ∀ 𝑘 𝜏 )
31 30 bnj1352 ( ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷 ) ∧ 𝜏 ) → ∀ 𝑘 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷 ) ∧ 𝜏 ) )
32 29 31 hbxfrbi ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) → ∀ 𝑘 ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) )
33 bnj170 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷 ) ↔ ( ( 𝑗𝑛𝑛𝐷 ) ∧ 𝑗 ≠ ∅ ) )
34 4 bnj923 ( 𝑛𝐷𝑛 ∈ ω )
35 elnn ( ( 𝑗𝑛𝑛 ∈ ω ) → 𝑗 ∈ ω )
36 34 35 sylan2 ( ( 𝑗𝑛𝑛𝐷 ) → 𝑗 ∈ ω )
37 36 anim1i ( ( ( 𝑗𝑛𝑛𝐷 ) ∧ 𝑗 ≠ ∅ ) → ( 𝑗 ∈ ω ∧ 𝑗 ≠ ∅ ) )
38 33 37 sylbi ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑗 ≠ ∅ ) )
39 nnsuc ( ( 𝑗 ∈ ω ∧ 𝑗 ≠ ∅ ) → ∃ 𝑘 ∈ ω 𝑗 = suc 𝑘 )
40 rexex ( ∃ 𝑘 ∈ ω 𝑗 = suc 𝑘 → ∃ 𝑘 𝑗 = suc 𝑘 )
41 38 39 40 3syl ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷 ) → ∃ 𝑘 𝑗 = suc 𝑘 )
42 41 bnj721 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) → ∃ 𝑘 𝑗 = suc 𝑘 )
43 32 42 bnj596 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) → ∃ 𝑘 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) ∧ 𝑗 = suc 𝑘 ) )
44 bnj667 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) → ( 𝑗𝑛𝑛𝐷𝜏 ) )
45 44 anim1i ( ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) ∧ 𝑗 = suc 𝑘 ) → ( ( 𝑗𝑛𝑛𝐷𝜏 ) ∧ 𝑗 = suc 𝑘 ) )
46 bnj258 ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ↔ ( ( 𝑗𝑛𝑛𝐷𝜏 ) ∧ 𝑗 = suc 𝑘 ) )
47 45 46 sylibr ( ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) ∧ 𝑗 = suc 𝑘 ) → ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) )
48 df-bnj17 ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ↔ ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜏 ) )
49 bnj219 ( 𝑗 = suc 𝑘𝑘 E 𝑗 )
50 49 3ad2ant3 ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) → 𝑘 E 𝑗 )
51 50 adantr ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜏 ) → 𝑘 E 𝑗 )
52 vex 𝑘 ∈ V
53 52 bnj216 ( 𝑗 = suc 𝑘𝑘𝑗 )
54 df-3an ( ( 𝑘𝑗𝑗𝑛𝑛𝐷 ) ↔ ( ( 𝑘𝑗𝑗𝑛 ) ∧ 𝑛𝐷 ) )
55 3anrot ( ( 𝑘𝑗𝑗𝑛𝑛𝐷 ) ↔ ( 𝑗𝑛𝑛𝐷𝑘𝑗 ) )
56 ancom ( ( ( 𝑘𝑗𝑗𝑛 ) ∧ 𝑛𝐷 ) ↔ ( 𝑛𝐷 ∧ ( 𝑘𝑗𝑗𝑛 ) ) )
57 54 55 56 3bitr3i ( ( 𝑗𝑛𝑛𝐷𝑘𝑗 ) ↔ ( 𝑛𝐷 ∧ ( 𝑘𝑗𝑗𝑛 ) ) )
58 eldifi ( 𝑛 ∈ ( ω ∖ { ∅ } ) → 𝑛 ∈ ω )
59 58 4 eleq2s ( 𝑛𝐷𝑛 ∈ ω )
60 nnord ( 𝑛 ∈ ω → Ord 𝑛 )
61 ordtr1 ( Ord 𝑛 → ( ( 𝑘𝑗𝑗𝑛 ) → 𝑘𝑛 ) )
62 59 60 61 3syl ( 𝑛𝐷 → ( ( 𝑘𝑗𝑗𝑛 ) → 𝑘𝑛 ) )
63 62 imp ( ( 𝑛𝐷 ∧ ( 𝑘𝑗𝑗𝑛 ) ) → 𝑘𝑛 )
64 57 63 sylbi ( ( 𝑗𝑛𝑛𝐷𝑘𝑗 ) → 𝑘𝑛 )
65 53 64 syl3an3 ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) → 𝑘𝑛 )
66 rsp ( ∀ 𝑘𝑛 ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) → ( 𝑘𝑛 → ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) ) )
67 10 66 sylbi ( 𝜏 → ( 𝑘𝑛 → ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) ) )
68 65 67 mpan9 ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜏 ) → ( 𝑘 E 𝑗[ 𝑘 / 𝑗 ] 𝜃 ) )
69 51 68 mpd ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜏 ) → [ 𝑘 / 𝑗 ] 𝜃 )
70 48 69 sylbi ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) → [ 𝑘 / 𝑗 ] 𝜃 )
71 70 anim1i ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( [ 𝑘 / 𝑗 ] 𝜃 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) )
72 bnj252 ( ( [ 𝑘 / 𝑗 ] 𝜃𝑛𝐷𝜒𝜒′ ) ↔ ( [ 𝑘 / 𝑗 ] 𝜃 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) )
73 71 72 sylibr ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( [ 𝑘 / 𝑗 ] 𝜃𝑛𝐷𝜒𝜒′ ) )
74 bnj446 ( ( [ 𝑘 / 𝑗 ] 𝜃𝑛𝐷𝜒𝜒′ ) ↔ ( ( 𝑛𝐷𝜒𝜒′ ) ∧ [ 𝑘 / 𝑗 ] 𝜃 ) )
75 pm3.35 ( ( ( 𝑛𝐷𝜒𝜒′ ) ∧ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) ) ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) )
76 9 75 sylan2b ( ( ( 𝑛𝐷𝜒𝜒′ ) ∧ [ 𝑘 / 𝑗 ] 𝜃 ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) )
77 74 76 sylbi ( ( [ 𝑘 / 𝑗 ] 𝜃𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑘 ) = ( 𝑔𝑘 ) )
78 iuneq1 ( ( 𝑓𝑘 ) = ( 𝑔𝑘 ) → 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
79 73 77 78 3syl ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
80 bnj658 ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) → ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) )
81 3 simp3bi ( 𝜒𝜓 )
82 7 simp3bi ( 𝜒′𝜓′ )
83 81 82 bnj240 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝜓𝜓′ ) )
84 80 83 anim12i ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝜓𝜓′ ) ) )
85 simpl ( ( 𝜓𝜓′ ) → 𝜓 )
86 85 anim2i ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝜓𝜓′ ) ) → ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜓 ) )
87 simp3 ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) → 𝑗 = suc 𝑘 )
88 87 anim1i ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜓 ) → ( 𝑗 = suc 𝑘𝜓 ) )
89 simpl1 ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘𝜓 ) ) → 𝑗𝑛 )
90 df-3an ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ↔ ( ( 𝑗𝑛𝑛𝐷 ) ∧ 𝑗 = suc 𝑘 ) )
91 90 biancomi ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ↔ ( 𝑗 = suc 𝑘 ∧ ( 𝑗𝑛𝑛𝐷 ) ) )
92 elnn ( ( 𝑘𝑗𝑗 ∈ ω ) → 𝑘 ∈ ω )
93 53 36 92 syl2an ( ( 𝑗 = suc 𝑘 ∧ ( 𝑗𝑛𝑛𝐷 ) ) → 𝑘 ∈ ω )
94 91 93 sylbi ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) → 𝑘 ∈ ω )
95 2 bnj589 ( 𝜓 ↔ ∀ 𝑘 ∈ ω ( suc 𝑘𝑛 → ( 𝑓 ‘ suc 𝑘 ) = 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
96 95 bnj590 ( ( 𝑗 = suc 𝑘𝜓 ) → ( 𝑘 ∈ ω → ( 𝑗𝑛 → ( 𝑓𝑗 ) = 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
97 94 96 mpan9 ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘𝜓 ) ) → ( 𝑗𝑛 → ( 𝑓𝑗 ) = 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
98 89 97 mpd ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘𝜓 ) ) → ( 𝑓𝑗 ) = 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
99 88 98 syldan ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜓 ) → ( 𝑓𝑗 ) = 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
100 84 86 99 3syl ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( 𝑓𝑗 ) = 𝑦 ∈ ( 𝑓𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
101 simpr ( ( 𝜓𝜓′ ) → 𝜓′ )
102 101 anim2i ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝜓𝜓′ ) ) → ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜓′ ) )
103 87 anim1i ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜓′ ) → ( 𝑗 = suc 𝑘𝜓′ ) )
104 simpl1 ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘𝜓′ ) ) → 𝑗𝑛 )
105 6 bnj589 ( 𝜓′ ↔ ∀ 𝑘 ∈ ω ( suc 𝑘𝑛 → ( 𝑔 ‘ suc 𝑘 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
106 105 bnj590 ( ( 𝑗 = suc 𝑘𝜓′ ) → ( 𝑘 ∈ ω → ( 𝑗𝑛 → ( 𝑔𝑗 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
107 94 106 mpan9 ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘𝜓′ ) ) → ( 𝑗𝑛 → ( 𝑔𝑗 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
108 104 107 mpd ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ ( 𝑗 = suc 𝑘𝜓′ ) ) → ( 𝑔𝑗 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
109 103 108 syldan ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘 ) ∧ 𝜓′ ) → ( 𝑔𝑗 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
110 84 102 109 3syl ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( 𝑔𝑗 ) = 𝑦 ∈ ( 𝑔𝑘 ) pred ( 𝑦 , 𝐴 , 𝑅 ) )
111 79 100 110 3eqtr4d ( ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) )
112 111 ex ( ( 𝑗𝑛𝑛𝐷𝑗 = suc 𝑘𝜏 ) → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
113 47 112 syl ( ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) ∧ 𝑗 = suc 𝑘 ) → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
114 43 113 bnj593 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) → ∃ 𝑘 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
115 bnj258 ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝑛𝐷𝜏 ) ↔ ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝜏 ) ∧ 𝑛𝐷 ) )
116 19.9v ( ∃ 𝑘 ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) ↔ ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
117 114 115 116 3imtr3i ( ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝜏 ) ∧ 𝑛𝐷 ) → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
118 117 expimpd ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝜏 ) → ( ( 𝑛𝐷 ∧ ( 𝑛𝐷𝜒𝜒′ ) ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
119 28 118 syl5bir ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝜏 ) → ( ( 𝑛𝐷𝜒𝜒′ ) → ( 𝑓𝑗 ) = ( 𝑔𝑗 ) ) )
120 119 8 sylibr ( ( 𝑗 ≠ ∅ ∧ 𝑗𝑛𝜏 ) → 𝜃 )
121 120 3expib ( 𝑗 ≠ ∅ → ( ( 𝑗𝑛𝜏 ) → 𝜃 ) )
122 23 121 pm2.61ine ( ( 𝑗𝑛𝜏 ) → 𝜃 )