Step |
Hyp |
Ref |
Expression |
1 |
|
caofcan.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
caofcan.2 |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑇 ) |
3 |
|
caofcan.3 |
⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝑆 ) |
4 |
|
caofcan.4 |
⊢ ( 𝜑 → 𝐻 : 𝐴 ⟶ 𝑆 ) |
5 |
|
caofcan.5 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝑥 𝑅 𝑦 ) = ( 𝑥 𝑅 𝑧 ) ↔ 𝑦 = 𝑧 ) ) |
6 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
7 |
3
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
8 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) = ( 𝐹 ‘ 𝑤 ) ) |
10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) = ( 𝐺 ‘ 𝑤 ) ) |
11 |
6 7 1 1 8 9 10
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) ) |
12 |
4
|
ffnd |
⊢ ( 𝜑 → 𝐻 Fn 𝐴 ) |
13 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) |
14 |
6 12 1 1 8 9 13
|
ofval |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ 𝑤 ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) |
15 |
11 14
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ 𝑤 ) ↔ ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ) ) |
16 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → 𝜑 ) |
17 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑤 ) ∈ 𝑇 ) |
18 |
3
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ) |
19 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) |
20 |
5
|
caovcang |
⊢ ( ( 𝜑 ∧ ( ( 𝐹 ‘ 𝑤 ) ∈ 𝑇 ∧ ( 𝐺 ‘ 𝑤 ) ∈ 𝑆 ∧ ( 𝐻 ‘ 𝑤 ) ∈ 𝑆 ) ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ↔ ( 𝐺 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) ) |
21 |
16 17 18 19 20
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐺 ‘ 𝑤 ) ) = ( ( 𝐹 ‘ 𝑤 ) 𝑅 ( 𝐻 ‘ 𝑤 ) ) ↔ ( 𝐺 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) ) |
22 |
15 21
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝐴 ) → ( ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ 𝑤 ) ↔ ( 𝐺 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) ) |
23 |
22
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ 𝑤 ) ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) ) |
24 |
6 7 1 1 8
|
offn |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐺 ) Fn 𝐴 ) |
25 |
6 12 1 1 8
|
offn |
⊢ ( 𝜑 → ( 𝐹 ∘f 𝑅 𝐻 ) Fn 𝐴 ) |
26 |
|
eqfnfv |
⊢ ( ( ( 𝐹 ∘f 𝑅 𝐺 ) Fn 𝐴 ∧ ( 𝐹 ∘f 𝑅 𝐻 ) Fn 𝐴 ) → ( ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝐹 ∘f 𝑅 𝐻 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ 𝑤 ) ) ) |
27 |
24 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝐹 ∘f 𝑅 𝐻 ) ↔ ∀ 𝑤 ∈ 𝐴 ( ( 𝐹 ∘f 𝑅 𝐺 ) ‘ 𝑤 ) = ( ( 𝐹 ∘f 𝑅 𝐻 ) ‘ 𝑤 ) ) ) |
28 |
|
eqfnfv |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝐻 Fn 𝐴 ) → ( 𝐺 = 𝐻 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) ) |
29 |
7 12 28
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 = 𝐻 ↔ ∀ 𝑤 ∈ 𝐴 ( 𝐺 ‘ 𝑤 ) = ( 𝐻 ‘ 𝑤 ) ) ) |
30 |
23 27 29
|
3bitr4d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f 𝑅 𝐺 ) = ( 𝐹 ∘f 𝑅 𝐻 ) ↔ 𝐺 = 𝐻 ) ) |