| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofcan.1 |
|
| 2 |
|
caofcan.2 |
|
| 3 |
|
caofcan.3 |
|
| 4 |
|
caofcan.4 |
|
| 5 |
|
caofcan.5 |
|
| 6 |
2
|
ffnd |
|
| 7 |
3
|
ffnd |
|
| 8 |
|
inidm |
|
| 9 |
|
eqidd |
|
| 10 |
|
eqidd |
|
| 11 |
6 7 1 1 8 9 10
|
ofval |
|
| 12 |
4
|
ffnd |
|
| 13 |
|
eqidd |
|
| 14 |
6 12 1 1 8 9 13
|
ofval |
|
| 15 |
11 14
|
eqeq12d |
|
| 16 |
|
simpl |
|
| 17 |
2
|
ffvelcdmda |
|
| 18 |
3
|
ffvelcdmda |
|
| 19 |
4
|
ffvelcdmda |
|
| 20 |
5
|
caovcang |
|
| 21 |
16 17 18 19 20
|
syl13anc |
|
| 22 |
15 21
|
bitrd |
|
| 23 |
22
|
ralbidva |
|
| 24 |
6 7 1 1 8
|
offn |
|
| 25 |
6 12 1 1 8
|
offn |
|
| 26 |
|
eqfnfv |
|
| 27 |
24 25 26
|
syl2anc |
|
| 28 |
|
eqfnfv |
|
| 29 |
7 12 28
|
syl2anc |
|
| 30 |
23 27 29
|
3bitr4d |
|