Description: Transfer a cancellation law like mulcan to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caofcan.1 | |
|
caofcan.2 | |
||
caofcan.3 | |
||
caofcan.4 | |
||
caofcan.5 | |
||
Assertion | caofcan | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofcan.1 | |
|
2 | caofcan.2 | |
|
3 | caofcan.3 | |
|
4 | caofcan.4 | |
|
5 | caofcan.5 | |
|
6 | 2 | ffnd | |
7 | 3 | ffnd | |
8 | inidm | |
|
9 | eqidd | |
|
10 | eqidd | |
|
11 | 6 7 1 1 8 9 10 | ofval | |
12 | 4 | ffnd | |
13 | eqidd | |
|
14 | 6 12 1 1 8 9 13 | ofval | |
15 | 11 14 | eqeq12d | |
16 | simpl | |
|
17 | 2 | ffvelcdmda | |
18 | 3 | ffvelcdmda | |
19 | 4 | ffvelcdmda | |
20 | 5 | caovcang | |
21 | 16 17 18 19 20 | syl13anc | |
22 | 15 21 | bitrd | |
23 | 22 | ralbidva | |
24 | 6 7 1 1 8 | offn | |
25 | 6 12 1 1 8 | offn | |
26 | eqfnfv | |
|
27 | 24 25 26 | syl2anc | |
28 | eqfnfv | |
|
29 | 7 12 28 | syl2anc | |
30 | 23 27 29 | 3bitr4d | |