Metamath Proof Explorer


Theorem caofcan

Description: Transfer a cancellation law like mulcan to the function operation. (Contributed by Steve Rodriguez, 16-Nov-2015)

Ref Expression
Hypotheses caofcan.1 φAV
caofcan.2 φF:AT
caofcan.3 φG:AS
caofcan.4 φH:AS
caofcan.5 φxTySzSxRy=xRzy=z
Assertion caofcan φFRfG=FRfHG=H

Proof

Step Hyp Ref Expression
1 caofcan.1 φAV
2 caofcan.2 φF:AT
3 caofcan.3 φG:AS
4 caofcan.4 φH:AS
5 caofcan.5 φxTySzSxRy=xRzy=z
6 2 ffnd φFFnA
7 3 ffnd φGFnA
8 inidm AA=A
9 eqidd φwAFw=Fw
10 eqidd φwAGw=Gw
11 6 7 1 1 8 9 10 ofval φwAFRfGw=FwRGw
12 4 ffnd φHFnA
13 eqidd φwAHw=Hw
14 6 12 1 1 8 9 13 ofval φwAFRfHw=FwRHw
15 11 14 eqeq12d φwAFRfGw=FRfHwFwRGw=FwRHw
16 simpl φwAφ
17 2 ffvelcdmda φwAFwT
18 3 ffvelcdmda φwAGwS
19 4 ffvelcdmda φwAHwS
20 5 caovcang φFwTGwSHwSFwRGw=FwRHwGw=Hw
21 16 17 18 19 20 syl13anc φwAFwRGw=FwRHwGw=Hw
22 15 21 bitrd φwAFRfGw=FRfHwGw=Hw
23 22 ralbidva φwAFRfGw=FRfHwwAGw=Hw
24 6 7 1 1 8 offn φFRfGFnA
25 6 12 1 1 8 offn φFRfHFnA
26 eqfnfv FRfGFnAFRfHFnAFRfG=FRfHwAFRfGw=FRfHw
27 24 25 26 syl2anc φFRfG=FRfHwAFRfGw=FRfHw
28 eqfnfv GFnAHFnAG=HwAGw=Hw
29 7 12 28 syl2anc φG=HwAGw=Hw
30 23 27 29 3bitr4d φFRfG=FRfHG=H