Step |
Hyp |
Ref |
Expression |
1 |
|
caofcan.1 |
|- ( ph -> A e. V ) |
2 |
|
caofcan.2 |
|- ( ph -> F : A --> T ) |
3 |
|
caofcan.3 |
|- ( ph -> G : A --> S ) |
4 |
|
caofcan.4 |
|- ( ph -> H : A --> S ) |
5 |
|
caofcan.5 |
|- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x R y ) = ( x R z ) <-> y = z ) ) |
6 |
2
|
ffnd |
|- ( ph -> F Fn A ) |
7 |
3
|
ffnd |
|- ( ph -> G Fn A ) |
8 |
|
inidm |
|- ( A i^i A ) = A |
9 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
10 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( G ` w ) = ( G ` w ) ) |
11 |
6 7 1 1 8 9 10
|
ofval |
|- ( ( ph /\ w e. A ) -> ( ( F oF R G ) ` w ) = ( ( F ` w ) R ( G ` w ) ) ) |
12 |
4
|
ffnd |
|- ( ph -> H Fn A ) |
13 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( H ` w ) = ( H ` w ) ) |
14 |
6 12 1 1 8 9 13
|
ofval |
|- ( ( ph /\ w e. A ) -> ( ( F oF R H ) ` w ) = ( ( F ` w ) R ( H ` w ) ) ) |
15 |
11 14
|
eqeq12d |
|- ( ( ph /\ w e. A ) -> ( ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) <-> ( ( F ` w ) R ( G ` w ) ) = ( ( F ` w ) R ( H ` w ) ) ) ) |
16 |
|
simpl |
|- ( ( ph /\ w e. A ) -> ph ) |
17 |
2
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. T ) |
18 |
3
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
19 |
4
|
ffvelrnda |
|- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
20 |
5
|
caovcang |
|- ( ( ph /\ ( ( F ` w ) e. T /\ ( G ` w ) e. S /\ ( H ` w ) e. S ) ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( ( F ` w ) R ( H ` w ) ) <-> ( G ` w ) = ( H ` w ) ) ) |
21 |
16 17 18 19 20
|
syl13anc |
|- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( ( F ` w ) R ( H ` w ) ) <-> ( G ` w ) = ( H ` w ) ) ) |
22 |
15 21
|
bitrd |
|- ( ( ph /\ w e. A ) -> ( ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) <-> ( G ` w ) = ( H ` w ) ) ) |
23 |
22
|
ralbidva |
|- ( ph -> ( A. w e. A ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) <-> A. w e. A ( G ` w ) = ( H ` w ) ) ) |
24 |
6 7 1 1 8
|
offn |
|- ( ph -> ( F oF R G ) Fn A ) |
25 |
6 12 1 1 8
|
offn |
|- ( ph -> ( F oF R H ) Fn A ) |
26 |
|
eqfnfv |
|- ( ( ( F oF R G ) Fn A /\ ( F oF R H ) Fn A ) -> ( ( F oF R G ) = ( F oF R H ) <-> A. w e. A ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) ) ) |
27 |
24 25 26
|
syl2anc |
|- ( ph -> ( ( F oF R G ) = ( F oF R H ) <-> A. w e. A ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) ) ) |
28 |
|
eqfnfv |
|- ( ( G Fn A /\ H Fn A ) -> ( G = H <-> A. w e. A ( G ` w ) = ( H ` w ) ) ) |
29 |
7 12 28
|
syl2anc |
|- ( ph -> ( G = H <-> A. w e. A ( G ` w ) = ( H ` w ) ) ) |
30 |
23 27 29
|
3bitr4d |
|- ( ph -> ( ( F oF R G ) = ( F oF R H ) <-> G = H ) ) |