| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofcan.1 |
|- ( ph -> A e. V ) |
| 2 |
|
caofcan.2 |
|- ( ph -> F : A --> T ) |
| 3 |
|
caofcan.3 |
|- ( ph -> G : A --> S ) |
| 4 |
|
caofcan.4 |
|- ( ph -> H : A --> S ) |
| 5 |
|
caofcan.5 |
|- ( ( ph /\ ( x e. T /\ y e. S /\ z e. S ) ) -> ( ( x R y ) = ( x R z ) <-> y = z ) ) |
| 6 |
2
|
ffnd |
|- ( ph -> F Fn A ) |
| 7 |
3
|
ffnd |
|- ( ph -> G Fn A ) |
| 8 |
|
inidm |
|- ( A i^i A ) = A |
| 9 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
| 10 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( G ` w ) = ( G ` w ) ) |
| 11 |
6 7 1 1 8 9 10
|
ofval |
|- ( ( ph /\ w e. A ) -> ( ( F oF R G ) ` w ) = ( ( F ` w ) R ( G ` w ) ) ) |
| 12 |
4
|
ffnd |
|- ( ph -> H Fn A ) |
| 13 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( H ` w ) = ( H ` w ) ) |
| 14 |
6 12 1 1 8 9 13
|
ofval |
|- ( ( ph /\ w e. A ) -> ( ( F oF R H ) ` w ) = ( ( F ` w ) R ( H ` w ) ) ) |
| 15 |
11 14
|
eqeq12d |
|- ( ( ph /\ w e. A ) -> ( ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) <-> ( ( F ` w ) R ( G ` w ) ) = ( ( F ` w ) R ( H ` w ) ) ) ) |
| 16 |
|
simpl |
|- ( ( ph /\ w e. A ) -> ph ) |
| 17 |
2
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. T ) |
| 18 |
3
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( G ` w ) e. S ) |
| 19 |
4
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( H ` w ) e. S ) |
| 20 |
5
|
caovcang |
|- ( ( ph /\ ( ( F ` w ) e. T /\ ( G ` w ) e. S /\ ( H ` w ) e. S ) ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( ( F ` w ) R ( H ` w ) ) <-> ( G ` w ) = ( H ` w ) ) ) |
| 21 |
16 17 18 19 20
|
syl13anc |
|- ( ( ph /\ w e. A ) -> ( ( ( F ` w ) R ( G ` w ) ) = ( ( F ` w ) R ( H ` w ) ) <-> ( G ` w ) = ( H ` w ) ) ) |
| 22 |
15 21
|
bitrd |
|- ( ( ph /\ w e. A ) -> ( ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) <-> ( G ` w ) = ( H ` w ) ) ) |
| 23 |
22
|
ralbidva |
|- ( ph -> ( A. w e. A ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) <-> A. w e. A ( G ` w ) = ( H ` w ) ) ) |
| 24 |
6 7 1 1 8
|
offn |
|- ( ph -> ( F oF R G ) Fn A ) |
| 25 |
6 12 1 1 8
|
offn |
|- ( ph -> ( F oF R H ) Fn A ) |
| 26 |
|
eqfnfv |
|- ( ( ( F oF R G ) Fn A /\ ( F oF R H ) Fn A ) -> ( ( F oF R G ) = ( F oF R H ) <-> A. w e. A ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) ) ) |
| 27 |
24 25 26
|
syl2anc |
|- ( ph -> ( ( F oF R G ) = ( F oF R H ) <-> A. w e. A ( ( F oF R G ) ` w ) = ( ( F oF R H ) ` w ) ) ) |
| 28 |
|
eqfnfv |
|- ( ( G Fn A /\ H Fn A ) -> ( G = H <-> A. w e. A ( G ` w ) = ( H ` w ) ) ) |
| 29 |
7 12 28
|
syl2anc |
|- ( ph -> ( G = H <-> A. w e. A ( G ` w ) = ( H ` w ) ) ) |
| 30 |
23 27 29
|
3bitr4d |
|- ( ph -> ( ( F oF R G ) = ( F oF R H ) <-> G = H ) ) |