| Step | Hyp | Ref | Expression | 
						
							| 1 |  | onelon | ⊢ ( ( 𝑧  ∈  On  ∧  𝑦  ∈  𝑧 )  →  𝑦  ∈  On ) | 
						
							| 2 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 3 |  | onelss | ⊢ ( 𝑧  ∈  On  →  ( 𝑦  ∈  𝑧  →  𝑦  ⊆  𝑧 ) ) | 
						
							| 4 | 3 | imp | ⊢ ( ( 𝑧  ∈  On  ∧  𝑦  ∈  𝑧 )  →  𝑦  ⊆  𝑧 ) | 
						
							| 5 |  | ssdomg | ⊢ ( 𝑧  ∈  V  →  ( 𝑦  ⊆  𝑧  →  𝑦  ≼  𝑧 ) ) | 
						
							| 6 | 2 4 5 | mpsyl | ⊢ ( ( 𝑧  ∈  On  ∧  𝑦  ∈  𝑧 )  →  𝑦  ≼  𝑧 ) | 
						
							| 7 | 1 6 | jca | ⊢ ( ( 𝑧  ∈  On  ∧  𝑦  ∈  𝑧 )  →  ( 𝑦  ∈  On  ∧  𝑦  ≼  𝑧 ) ) | 
						
							| 8 |  | domsdomtr | ⊢ ( ( 𝑦  ≼  𝑧  ∧  𝑧  ≺  𝐴 )  →  𝑦  ≺  𝐴 ) | 
						
							| 9 | 8 | anim2i | ⊢ ( ( 𝑦  ∈  On  ∧  ( 𝑦  ≼  𝑧  ∧  𝑧  ≺  𝐴 ) )  →  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) | 
						
							| 10 | 9 | anassrs | ⊢ ( ( ( 𝑦  ∈  On  ∧  𝑦  ≼  𝑧 )  ∧  𝑧  ≺  𝐴 )  →  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) | 
						
							| 11 | 7 10 | sylan | ⊢ ( ( ( 𝑧  ∈  On  ∧  𝑦  ∈  𝑧 )  ∧  𝑧  ≺  𝐴 )  →  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) | 
						
							| 12 | 11 | exp31 | ⊢ ( 𝑧  ∈  On  →  ( 𝑦  ∈  𝑧  →  ( 𝑧  ≺  𝐴  →  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) ) ) | 
						
							| 13 | 12 | com12 | ⊢ ( 𝑦  ∈  𝑧  →  ( 𝑧  ∈  On  →  ( 𝑧  ≺  𝐴  →  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) ) ) | 
						
							| 14 | 13 | impd | ⊢ ( 𝑦  ∈  𝑧  →  ( ( 𝑧  ∈  On  ∧  𝑧  ≺  𝐴 )  →  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) ) | 
						
							| 15 |  | breq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  ≺  𝐴  ↔  𝑧  ≺  𝐴 ) ) | 
						
							| 16 | 15 | elrab | ⊢ ( 𝑧  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ↔  ( 𝑧  ∈  On  ∧  𝑧  ≺  𝐴 ) ) | 
						
							| 17 |  | breq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ≺  𝐴  ↔  𝑦  ≺  𝐴 ) ) | 
						
							| 18 | 17 | elrab | ⊢ ( 𝑦  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ↔  ( 𝑦  ∈  On  ∧  𝑦  ≺  𝐴 ) ) | 
						
							| 19 | 14 16 18 | 3imtr4g | ⊢ ( 𝑦  ∈  𝑧  →  ( 𝑧  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  →  𝑦  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) ) | 
						
							| 20 | 19 | imp | ⊢ ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } )  →  𝑦  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) | 
						
							| 21 | 20 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } )  →  𝑦  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) | 
						
							| 22 |  | dftr2 | ⊢ ( Tr  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ↔  ∀ 𝑦 ∀ 𝑧 ( ( 𝑦  ∈  𝑧  ∧  𝑧  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } )  →  𝑦  ∈  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) ) | 
						
							| 23 | 21 22 | mpbir | ⊢ Tr  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } | 
						
							| 24 |  | ssrab2 | ⊢ { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ⊆  On | 
						
							| 25 |  | ordon | ⊢ Ord  On | 
						
							| 26 |  | trssord | ⊢ ( ( Tr  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∧  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ⊆  On  ∧  Ord  On )  →  Ord  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) | 
						
							| 27 | 23 24 25 26 | mp3an | ⊢ Ord  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } | 
						
							| 28 |  | hartogs | ⊢ ( 𝐴  ∈  V  →  { 𝑥  ∈  On  ∣  𝑥  ≼  𝐴 }  ∈  On ) | 
						
							| 29 |  | sdomdom | ⊢ ( 𝑥  ≺  𝐴  →  𝑥  ≼  𝐴 ) | 
						
							| 30 | 29 | a1i | ⊢ ( 𝑥  ∈  On  →  ( 𝑥  ≺  𝐴  →  𝑥  ≼  𝐴 ) ) | 
						
							| 31 | 30 | ss2rabi | ⊢ { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ⊆  { 𝑥  ∈  On  ∣  𝑥  ≼  𝐴 } | 
						
							| 32 |  | ssexg | ⊢ ( ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ⊆  { 𝑥  ∈  On  ∣  𝑥  ≼  𝐴 }  ∧  { 𝑥  ∈  On  ∣  𝑥  ≼  𝐴 }  ∈  On )  →  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  V ) | 
						
							| 33 | 31 32 | mpan | ⊢ ( { 𝑥  ∈  On  ∣  𝑥  ≼  𝐴 }  ∈  On  →  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  V ) | 
						
							| 34 |  | elong | ⊢ ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  V  →  ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On  ↔  Ord  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) ) | 
						
							| 35 | 28 33 34 | 3syl | ⊢ ( 𝐴  ∈  V  →  ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On  ↔  Ord  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) ) | 
						
							| 36 | 27 35 | mpbiri | ⊢ ( 𝐴  ∈  V  →  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On ) | 
						
							| 37 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 38 |  | eleq1 | ⊢ ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  =  ∅  →  ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On  ↔  ∅  ∈  On ) ) | 
						
							| 39 | 37 38 | mpbiri | ⊢ ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  =  ∅  →  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On ) | 
						
							| 40 |  | df-ne | ⊢ ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ≠  ∅  ↔  ¬  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  =  ∅ ) | 
						
							| 41 |  | rabn0 | ⊢ ( { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ≠  ∅  ↔  ∃ 𝑥  ∈  On 𝑥  ≺  𝐴 ) | 
						
							| 42 | 40 41 | bitr3i | ⊢ ( ¬  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  =  ∅  ↔  ∃ 𝑥  ∈  On 𝑥  ≺  𝐴 ) | 
						
							| 43 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 44 | 43 | brrelex2i | ⊢ ( 𝑥  ≺  𝐴  →  𝐴  ∈  V ) | 
						
							| 45 | 44 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  On 𝑥  ≺  𝐴  →  𝐴  ∈  V ) | 
						
							| 46 | 42 45 | sylbi | ⊢ ( ¬  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  =  ∅  →  𝐴  ∈  V ) | 
						
							| 47 | 39 46 | nsyl4 | ⊢ ( ¬  𝐴  ∈  V  →  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On ) | 
						
							| 48 | 36 47 | pm2.61i | ⊢ { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ∈  On |