| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemd4.l | ⊢  ≤   =  ( le ‘ 𝐾 ) | 
						
							| 2 |  | cdlemd4.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 3 |  | cdlemd4.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 4 |  | cdlemd4.h | ⊢ 𝐻  =  ( LHyp ‘ 𝐾 ) | 
						
							| 5 |  | cdlemd4.t | ⊢ 𝑇  =  ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) | 
						
							| 6 |  | simp1 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 ) ) | 
						
							| 7 |  | simp2l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) ) | 
						
							| 8 |  | simp2r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) | 
						
							| 9 |  | simp11l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝐾  ∈  HL ) | 
						
							| 10 | 9 | hllatd | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝐾  ∈  Lat ) | 
						
							| 11 |  | simp2rl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝑄  ∈  𝐴 ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 13 | 12 3 | atbase | ⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 14 | 11 13 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 15 |  | simp2ll | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝑃  ∈  𝐴 ) | 
						
							| 16 | 12 3 | atbase | ⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 17 | 15 16 | syl | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 18 |  | simp11 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) ) | 
						
							| 19 |  | simp12l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝐹  ∈  𝑇 ) | 
						
							| 20 | 12 4 5 | ltrncl | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝐹  ∈  𝑇  ∧  𝑃  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 | 18 19 17 20 | syl3anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 |  | simp3r | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 23 | 12 1 2 | latnlej1l | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝑄  ≠  𝑃 ) | 
						
							| 24 | 23 | necomd | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝐹 ‘ 𝑃 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 25 | 10 14 17 21 22 24 | syl131anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝑃  ≠  𝑄 ) | 
						
							| 26 |  | simp3l | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 ) ) | 
						
							| 27 |  | simp12 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) ) | 
						
							| 28 | 1 2 3 4 5 | cdlemd6 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 ) )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) )  ∧  ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 ) )  →  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) | 
						
							| 29 | 18 27 7 8 22 26 28 | syl231anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) | 
						
							| 30 | 1 2 3 4 5 | cdlemd5 | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ( 𝐹 ‘ 𝑄 )  =  ( 𝐺 ‘ 𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) ) | 
						
							| 31 | 6 7 8 25 26 29 30 | syl132anc | ⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝐹  ∈  𝑇  ∧  𝐺  ∈  𝑇 )  ∧  𝑅  ∈  𝐴 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑃 )  =  ( 𝐺 ‘ 𝑃 )  ∧  ¬  𝑄  ≤  ( 𝑃  ∨  ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐹 ‘ 𝑅 )  =  ( 𝐺 ‘ 𝑅 ) ) |