Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme12.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme12.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme12.g |
⊢ 𝐺 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme15.c |
⊢ 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
10 |
|
cdleme15.x |
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) |
11 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
14 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) |
15 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
16 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑃 ≠ 𝑄 ) |
17 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ≠ 𝑇 ) |
18 |
17
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑇 ≠ 𝑆 ) |
19 |
16 18
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≠ 𝑆 ) ) |
20 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) |
21 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
22 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) |
23 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝐾 ∈ HL ) |
24 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑆 ∈ 𝐴 ) |
25 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → 𝑇 ∈ 𝐴 ) |
26 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑆 ) ) |
27 |
23 24 25 26
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑆 ∨ 𝑇 ) = ( 𝑇 ∨ 𝑆 ) ) |
28 |
27
|
breq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ↔ 𝑈 ≤ ( 𝑇 ∨ 𝑆 ) ) ) |
29 |
22 28
|
mtbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ¬ 𝑈 ≤ ( 𝑇 ∨ 𝑆 ) ) |
30 |
1 2 3 4 5 6 8 7 10 9
|
cdleme15b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑇 ≠ 𝑆 ) ) ∧ ( ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑇 ∨ 𝑆 ) ) ) → ( ( 𝑃 ∨ 𝑋 ) ∧ ( 𝑄 ∨ 𝑋 ) ) = 𝑋 ) |
31 |
11 12 13 14 15 19 20 21 29 30
|
syl333anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑃 ∨ 𝑋 ) ∧ ( 𝑄 ∨ 𝑋 ) ) = 𝑋 ) |
32 |
1 2 3 4 5 6 7 8 9 10
|
cdleme15b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( 𝑃 ∨ 𝐶 ) ∧ ( 𝑄 ∨ 𝐶 ) ) = 𝐶 ) |
33 |
31 32
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ) ) ∧ ( ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑈 ≤ ( 𝑆 ∨ 𝑇 ) ) ) → ( ( ( 𝑃 ∨ 𝑋 ) ∧ ( 𝑄 ∨ 𝑋 ) ) ∨ ( ( 𝑃 ∨ 𝐶 ) ∧ ( 𝑄 ∨ 𝐶 ) ) ) = ( 𝑋 ∨ 𝐶 ) ) |