| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme17.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
cdleme17.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme17.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme17.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme17.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme17.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
| 7 |
|
cdleme17.f |
⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 8 |
|
cdleme17.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
| 9 |
|
cdleme17.c |
⊢ 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
| 10 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
| 11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
| 12 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
| 13 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 14 |
10 11 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑄 ∨ 𝑃 ) ) |
| 15 |
14
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝐶 ) ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( 𝑄 ∨ 𝐶 ) ) ) |
| 16 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
| 17 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑃 ≤ 𝑊 ) |
| 18 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
| 19 |
10
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ Lat ) |
| 20 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 21 |
20 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 22 |
18 21
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
20 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
11 23
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
20 4
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
12 25
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 28 |
20 1 2
|
latnlej1l |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑆 ≠ 𝑃 ) |
| 29 |
28
|
necomd |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑆 ∈ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑃 ≠ 𝑆 ) |
| 30 |
19 22 24 26 27 29
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑆 ) |
| 31 |
1 2 3 4 5 9
|
cdleme9a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆 ) ) → 𝐶 ∈ 𝐴 ) |
| 32 |
10 16 11 17 18 30 31
|
syl222anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐶 ∈ 𝐴 ) |
| 33 |
1 2 3 4 5 6 7 8 9
|
cdleme17b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 34 |
1 2 3 4
|
2llnma1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴 ) ∧ ¬ 𝐶 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( ( 𝑄 ∨ 𝑃 ) ∧ ( 𝑄 ∨ 𝐶 ) ) = 𝑄 ) |
| 35 |
10 11 12 32 33 34
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑄 ∨ 𝑃 ) ∧ ( 𝑄 ∨ 𝐶 ) ) = 𝑄 ) |
| 36 |
15 35
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑄 ∨ 𝐶 ) ) = 𝑄 ) |