Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemk.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemk.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemk.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemk.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemk.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemk.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemk.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
9 |
|
coass |
⊢ ( ( 𝑋 ∘ ◡ 𝐺 ) ∘ 𝐺 ) = ( 𝑋 ∘ ( ◡ 𝐺 ∘ 𝐺 ) ) |
10 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
11 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
12 |
1 5 6
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝐺 : 𝐵 –1-1-onto→ 𝐵 ) |
14 |
|
f1ococnv1 |
⊢ ( 𝐺 : 𝐵 –1-1-onto→ 𝐵 → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ◡ 𝐺 ∘ 𝐺 ) = ( I ↾ 𝐵 ) ) |
16 |
15
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ( ◡ 𝐺 ∘ 𝐺 ) ) = ( 𝑋 ∘ ( I ↾ 𝐵 ) ) ) |
17 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 ∈ 𝑇 ) |
18 |
1 5 6
|
ltrn1o |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ) → 𝑋 : 𝐵 –1-1-onto→ 𝐵 ) |
19 |
10 17 18
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑋 : 𝐵 –1-1-onto→ 𝐵 ) |
20 |
|
f1of |
⊢ ( 𝑋 : 𝐵 –1-1-onto→ 𝐵 → 𝑋 : 𝐵 ⟶ 𝐵 ) |
21 |
|
fcoi1 |
⊢ ( 𝑋 : 𝐵 ⟶ 𝐵 → ( 𝑋 ∘ ( I ↾ 𝐵 ) ) = 𝑋 ) |
22 |
19 20 21
|
3syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ( I ↾ 𝐵 ) ) = 𝑋 ) |
23 |
16 22
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ( ◡ 𝐺 ∘ 𝐺 ) ) = 𝑋 ) |
24 |
9 23
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝑋 ∘ ◡ 𝐺 ) ∘ 𝐺 ) = 𝑋 ) |
25 |
24
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑋 ∘ ◡ 𝐺 ) ∘ 𝐺 ) ‘ 𝑃 ) = ( 𝑋 ‘ 𝑃 ) ) |
26 |
5 6
|
ltrncnv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ) → ◡ 𝐺 ∈ 𝑇 ) |
27 |
10 11 26
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ◡ 𝐺 ∈ 𝑇 ) |
28 |
5 6
|
ltrnco |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝑇 ∧ ◡ 𝐺 ∈ 𝑇 ) → ( 𝑋 ∘ ◡ 𝐺 ) ∈ 𝑇 ) |
29 |
10 17 27 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ∘ ◡ 𝐺 ) ∈ 𝑇 ) |
30 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
31 |
2 4 5 6
|
ltrncoval |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑋 ∘ ◡ 𝐺 ) ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ∈ 𝐴 ) → ( ( ( 𝑋 ∘ ◡ 𝐺 ) ∘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑋 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
32 |
10 29 11 30 31
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( ( 𝑋 ∘ ◡ 𝐺 ) ∘ 𝐺 ) ‘ 𝑃 ) = ( ( 𝑋 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
33 |
25 32
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑋 ‘ 𝑃 ) = ( ( 𝑋 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑃 ) ) ) |
34 |
33
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
35 |
2 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐺 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
36 |
35
|
3adant2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) |
37 |
2 3 4 5 6 7
|
trljat1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∘ ◡ 𝐺 ) ∈ 𝑇 ∧ ( ( 𝐺 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐺 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
38 |
10 29 36 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( ( 𝑋 ∘ ◡ 𝐺 ) ‘ ( 𝐺 ‘ 𝑃 ) ) ) ) |
39 |
34 38
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑋 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑋 ‘ 𝑃 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝑅 ‘ ( 𝑋 ∘ ◡ 𝐺 ) ) ) ) |