Step |
Hyp |
Ref |
Expression |
1 |
|
cff1 |
⊢ ( 𝐵 ∈ On → ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) |
2 |
|
f1f |
⊢ ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 → 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) |
3 |
|
fco |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ) |
4 |
3
|
adantlr |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ) |
5 |
|
r19.29 |
⊢ ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) |
6 |
|
ffvelrn |
⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) |
7 |
|
ffn |
⊢ ( 𝑓 : 𝐵 ⟶ 𝐴 → 𝑓 Fn 𝐵 ) |
8 |
|
smoword |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) ∧ ( 𝑦 ∈ 𝐵 ∧ ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
10 |
9
|
exp32 |
⊢ ( ( 𝑓 Fn 𝐵 ∧ Smo 𝑓 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
11 |
7 10
|
sylan |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
12 |
6 11
|
syl7 |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( 𝑦 ∈ 𝐵 → ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
13 |
12
|
com23 |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
14 |
13
|
expdimp |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑧 ∈ ( cf ‘ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) ) ) |
15 |
14
|
3imp2 |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) |
16 |
|
sstr2 |
⊢ ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑓 ‘ 𝑦 ) ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) → 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
17 |
15 16
|
syl5com |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
18 |
|
fvco3 |
⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) = ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) |
19 |
18
|
sseq2d |
⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ↔ 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
20 |
19
|
adantll |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ↔ 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
21 |
20
|
3ad2antr1 |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ↔ 𝑥 ⊆ ( 𝑓 ‘ ( 𝑔 ‘ 𝑧 ) ) ) ) |
22 |
17 21
|
sylibrd |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
23 |
22
|
expcom |
⊢ ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
24 |
23
|
3expia |
⊢ ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
25 |
24
|
com4t |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ( 𝑧 ∈ ( cf ‘ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
27 |
26
|
expcomd |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑦 ∈ 𝐵 → ( 𝑧 ∈ ( cf ‘ 𝐵 ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
28 |
27
|
imp31 |
⊢ ( ( ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑧 ∈ ( cf ‘ 𝐵 ) ) → ( 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
29 |
28
|
reximdva |
⊢ ( ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ∧ 𝑦 ∈ 𝐵 ) → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
30 |
29
|
exp31 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( 𝑦 ∈ 𝐵 → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
31 |
30
|
com34 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) ) |
32 |
31
|
impcomd |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
33 |
32
|
com23 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( 𝑦 ∈ 𝐵 → ( ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
34 |
33
|
rexlimdv |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( ∃ 𝑦 ∈ 𝐵 ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
35 |
5 34
|
syl5 |
⊢ ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) → ( ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
36 |
35
|
expdimp |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
37 |
36
|
ralimdv |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
38 |
37
|
impr |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) |
39 |
|
vex |
⊢ 𝑓 ∈ V |
40 |
|
vex |
⊢ 𝑔 ∈ V |
41 |
39 40
|
coex |
⊢ ( 𝑓 ∘ 𝑔 ) ∈ V |
42 |
|
feq1 |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ↔ ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ) ) |
43 |
|
fveq1 |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ℎ ‘ 𝑧 ) = ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) |
44 |
43
|
sseq2d |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ↔ 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
45 |
44
|
rexbidv |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ↔ ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
46 |
45
|
ralbidv |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) |
47 |
42 46
|
anbi12d |
⊢ ( ℎ = ( 𝑓 ∘ 𝑔 ) → ( ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ↔ ( ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) ) ) |
48 |
41 47
|
spcev |
⊢ ( ( ( 𝑓 ∘ 𝑔 ) : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ( 𝑓 ∘ 𝑔 ) ‘ 𝑧 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) |
49 |
4 38 48
|
syl2an2r |
⊢ ( ( ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) ∧ 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 ) ∧ ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) |
50 |
49
|
exp43 |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) ) |
51 |
50
|
com24 |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) ) |
52 |
51
|
3impia |
⊢ ( ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
53 |
52
|
exlimiv |
⊢ ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
54 |
53
|
com13 |
⊢ ( 𝑔 : ( cf ‘ 𝐵 ) ⟶ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
55 |
2 54
|
syl |
⊢ ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) ) |
56 |
55
|
imp |
⊢ ( ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) |
57 |
56
|
exlimiv |
⊢ ( ∃ 𝑔 ( 𝑔 : ( cf ‘ 𝐵 ) –1-1→ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑦 ⊆ ( 𝑔 ‘ 𝑧 ) ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) |
58 |
1 57
|
syl |
⊢ ( 𝐵 ∈ On → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) ) ) |
59 |
|
cfon |
⊢ ( cf ‘ 𝐵 ) ∈ On |
60 |
|
cfflb |
⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐵 ) ∈ On ) → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |
61 |
59 60
|
mpan2 |
⊢ ( 𝐴 ∈ On → ( ∃ ℎ ( ℎ : ( cf ‘ 𝐵 ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ ( cf ‘ 𝐵 ) 𝑥 ⊆ ( ℎ ‘ 𝑧 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |
62 |
58 61
|
sylan9r |
⊢ ( ( 𝐴 ∈ On ∧ 𝐵 ∈ On ) → ( ∃ 𝑓 ( 𝑓 : 𝐵 ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ 𝐵 ) ) ) |