| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chmaidscmat.a | ⊢ 𝐴  =  ( 𝑁  Mat  𝑅 ) | 
						
							| 2 |  | chmaidscmat.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | chmaidscmat.c | ⊢ 𝐶  =  ( 𝑁  CharPlyMat  𝑅 ) | 
						
							| 4 |  | chmaidscmat.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 5 |  | chmaidscmat.e | ⊢ 𝐸  =  ( Base ‘ 𝑃 ) | 
						
							| 6 |  | chmaidscmat.y | ⊢ 𝑌  =  ( 𝑁  Mat  𝑃 ) | 
						
							| 7 |  | chmaidscmat.k | ⊢ 𝐾  =  ( Base ‘ 𝑌 ) | 
						
							| 8 |  | chmaidscmat.m | ⊢  ·   =  (  ·𝑠  ‘ 𝑌 ) | 
						
							| 9 |  | chmaidscmat.1 | ⊢  1   =  ( 1r ‘ 𝑌 ) | 
						
							| 10 |  | chmaidscmat.d | ⊢ 𝑆  =  ( 𝑁  ScMat  𝑃 ) | 
						
							| 11 |  | crngring | ⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring ) | 
						
							| 12 | 4 | ply1ring | ⊢ ( 𝑅  ∈  Ring  →  𝑃  ∈  Ring ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  Ring ) | 
						
							| 14 | 13 | anim2i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 15 | 14 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring ) ) | 
						
							| 16 | 3 1 2 4 5 | chpmatply1 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐶 ‘ 𝑀 )  ∈  𝐸 ) | 
						
							| 17 | 4 6 | pmatring | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring ) | 
						
							| 18 | 11 17 | sylan2 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring ) | 
						
							| 19 | 7 9 | ringidcl | ⊢ ( 𝑌  ∈  Ring  →   1   ∈  𝐾 ) | 
						
							| 20 | 18 19 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →   1   ∈  𝐾 ) | 
						
							| 21 | 20 | 3adant3 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →   1   ∈  𝐾 ) | 
						
							| 22 | 5 6 7 8 | matvscl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  ∧  ( ( 𝐶 ‘ 𝑀 )  ∈  𝐸  ∧   1   ∈  𝐾 ) )  →  ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝐾 ) | 
						
							| 23 | 15 16 21 22 | syl12anc | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝐾 ) | 
						
							| 24 |  | risset | ⊢ ( ( 𝐶 ‘ 𝑀 )  ∈  𝐸  ↔  ∃ 𝑐  ∈  𝐸 𝑐  =  ( 𝐶 ‘ 𝑀 ) ) | 
						
							| 25 |  | oveq1 | ⊢ ( ( 𝐶 ‘ 𝑀 )  =  𝑐  →  ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) | 
						
							| 26 | 25 | eqcoms | ⊢ ( 𝑐  =  ( 𝐶 ‘ 𝑀 )  →  ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑐  ∈  𝐸 )  →  ( 𝑐  =  ( 𝐶 ‘ 𝑀 )  →  ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 28 | 27 | reximdva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ∃ 𝑐  ∈  𝐸 𝑐  =  ( 𝐶 ‘ 𝑀 )  →  ∃ 𝑐  ∈  𝐸 ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 29 | 28 | com12 | ⊢ ( ∃ 𝑐  ∈  𝐸 𝑐  =  ( 𝐶 ‘ 𝑀 )  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑐  ∈  𝐸 ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 30 | 24 29 | sylbi | ⊢ ( ( 𝐶 ‘ 𝑀 )  ∈  𝐸  →  ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑐  ∈  𝐸 ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) ) | 
						
							| 31 | 16 30 | mpcom | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑐  ∈  𝐸 ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) | 
						
							| 32 | 5 6 7 9 8 10 | scmatel | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  Ring )  →  ( ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝑆  ↔  ( ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝐾  ∧  ∃ 𝑐  ∈  𝐸 ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) ) ) | 
						
							| 33 | 15 32 | syl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝑆  ↔  ( ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝐾  ∧  ∃ 𝑐  ∈  𝐸 ( ( 𝐶 ‘ 𝑀 )  ·   1  )  =  ( 𝑐  ·   1  ) ) ) ) | 
						
							| 34 | 23 31 33 | mpbir2and | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( ( 𝐶 ‘ 𝑀 )  ·   1  )  ∈  𝑆 ) |